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Abstract

The evolutionary history of a set of species is commonly represented

by a phylogenetic tree. Often, however, the data contains conflicting

signals, which can be better represented by a more general structure,

namely a phylogenetic network. Such networks allow the display of

several alternative evolutionary scenarios simultaneously but this can

come at the price of complex visual representations. Using so-called

circular split networks reduces this complexity, because this type of

network can always be visualized in the plane without any crossing

edges. These circular split networks form the core of this thesis. We

construct them, use them as a search space for minimum evolution

trees and explore their properties.

More specifically, we present a new method, called SuperQ, to con-

struct a circular split network summarising a collection of phyloge-

netic trees that have overlapping leaf sets. Then, we explore the set

of phylogenetic trees associated with a fixed circular split network, in

particular using it as a search space for optimal trees. This set repre-

sents just a tiny fraction of the space of all phylogenetic trees, but we

still find trees that compare quite favourably with those obtained by

a leading heuristic, which uses tree edit operations for searching the

whole tree space. In the last part, we advance our understanding of

this set of phylogenetic trees by investigating properties of a subset

of it which is induced by certain tree edit operations.



Contents

Declaration ii

Acknowledgement iii

Publications v

Statement of Originality vi

Abstract vii

Contents viii

List of Figures xi

1 Introduction 1

2 Basic concepts and definitions 6

2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Graphs and trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Phylogenetic trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Phylogenetic construction principles and methods . . . . . 10

2.3.1.1 Character-based methods . . . . . . . . . . . . . 10

2.3.1.2 Distance-based methods . . . . . . . . . . . . . . 12

2.3.2 Characterising phylogenetic trees . . . . . . . . . . . . . . 17

2.3.2.1 Splits and split systems . . . . . . . . . . . . . . 17

2.3.2.2 Quartets . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2.3 Distances . . . . . . . . . . . . . . . . . . . . . . 19

viii



CONTENTS

2.4 Phylogenetic networks . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Split networks . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 SuperQ: Computing super networks from quartets 27

3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Quartets and networks . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Description of the method . . . . . . . . . . . . . . . . . . 30

3.3.2.1 Step 1: Scaling the input trees . . . . . . . . . . 30

3.3.2.2 Step 2: Breaking the input trees into quartets . . 31

3.3.2.3 Step 3: Applying QNet . . . . . . . . . . . . . . 31

3.3.2.4 Step 4: Computing split weights . . . . . . . . . 32

3.3.2.5 Step 5: Computing a split network for Σ . . . . . 34

3.3.3 Implementation and properties of SuperQ . . . . . . . . . 34

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 Biological data sets . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Construction of circular split systems from distances 46

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Original NeighborNet . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Construction of the circular ordering . . . . . . . . . . . . 47

4.2.2 Calculation of the split weights . . . . . . . . . . . . . . . 51

4.3 Variants of NeighborNet . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Weightings . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.2 Greedy minimum evolution variant of NeighborNet . . . . 59

4.4 Networks from a Salmonella dataset . . . . . . . . . . . . . . . . . 60

4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ix



CONTENTS

5 NetME: Fishing for minimum evolution trees with Neighbor-

Nets 65

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 Bryant’s algorithm . . . . . . . . . . . . . . . . . . . . . . 68

5.3.2 Computing minimum evolution trees in circular split systems 71

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.2 Biological data sets . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Trees in circular orderings 82

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.1 Tree operations . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.2 Circular orderings . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.3 Plane binary trees . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Circular tree operations . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Tree neighbourhoods . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Discussion and future work 105

7.1 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . 105

7.1.1 A phylogenetic toolkit . . . . . . . . . . . . . . . . . . . . 108

7.2 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Appendix A 115

Appendix B 118

References 118

x



List of Figures

1.1 An example of an analogy. They have no common ancestor with

wings, but they inherited their forelimbs from a common ancestor. 3

2.1 A path from v4 to v7. The edges in the path are highlighted in bold. 7

2.2 a) An unrooted and b) a rooted binary phylogenetic tree, the root

is labelled with r. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 a) A phylogenetic tree T on 3 taxa and b) the different possibilities

to add another taxa into T . . . . . . . . . . . . . . . . . . . . . . 9

2.4 An example for a simple multiple sequence alignment for different

genera of beetles in the family Carabidae. . . . . . . . . . . . . . 11

2.5 Schematic representation of the situation around (a) an internal

edge e and (b) an external edge e of a phylogenetic tree referred

to in the context of Formulae 2.2 and 2.3. . . . . . . . . . . . . . 14

2.6 An illustration of the NeighborJoining algorithm. . . . . . . . . . 17

2.7 A phylogenetic tree on the set of taxa X = {x1, . . . , x7}. The edge

e corresponds to the split Se = {x6, x7, x1}|{x2, x3, x4, x5}. If e is

deleted T decomposes into TA and TB where L(TA) = {x6, x7, x1}
and L(TB) = {x2, x3, x4, x5}. The weight of the split Se is the

length of e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 A split A1|B1 = {x4, x5, x6, x7, x1}|{x2, x3} that is compatible with

Se in Figure 2.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 The smallest subtree (highlighted with bold edges) of the phyloge-

netic tree T that connects the taxa in {x2, x3, x4, x7}. It gives rise

to the quartet q = x7x2|x3x4 whose weight is the total length of

the bold purple edges. . . . . . . . . . . . . . . . . . . . . . . . . 20

xi



LIST OF FIGURES

2.10 The distances in a tree on the 4 taxa w, x, y, z are highlighted.

In a) D(w, x) and D(y, z) are highlighted in green and the dis-

tances D(x, y) and D(w, z) in blue. In b) the distances D(w, y) and

D(x, z) are highlighted in red. In this example D(w, x) + d(y, z)

must be smaller than D(w, y) + D(x, z) and D(w, z) + D(x, y).

Using any other labelling for the leaves it is easy to see that the

4-point condition always holds. . . . . . . . . . . . . . . . . . . . 20

2.11 A recombination network constructed from binary sequences. Each

vertex is labelled with a binary sequence, the sequences of the

internal vertices can be seen as ancestor sequences. This network

shows one recombination event between sequences 11000 and 00100

that combined and produced one offspring sequence 11100. . . . . 21

2.12 a) A split network on X = {x1, x2, x3, x4}. b) The deletion of

the blue edges leads to two connected components one contains

the vertices x1, x2 the other one x3, x4, therefore the blue edges

correspond to the split {x1, x2}|{x3, x4}. . . . . . . . . . . . . . . 23

2.13 a) A circular split system, b) two links are deleted, which leads

to two connected paths, which vertex labels correspond to the two

sides of the split S = {x1, x2, x3}|{x4, x5}. . . . . . . . . . . . . . 24

2.14 An example of a split network. . . . . . . . . . . . . . . . . . . . . 25

3.1 Type I splits for a) Q-imputation and b) SuperQ, Type II splits

for c) Q-imputation d) and SuperQ (gene trees with missing taxa

generated from a random tree with 16 taxa). . . . . . . . . . . . . 37

3.2 Super networks for the Solanum data set. a) Q-imputation consen-

sus network (threshold 0.33). b) Z-closure network (filtered super

network with standard options except MinNumberTrees set to 3).

c) SuperQ network. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Seven partial gene trees showing 50 species of Brassicaceae. . . . . 40

xii



LIST OF FIGURES

3.4 The super network constructed by SuperQ for the Arabidopsis data

set using a) the objective function (3.4), and b) a linear objective

function that does not take into account the bias towards balanced

splits. Edges marked in red in a) correspond to the split separat-

ing the Pachycladon species from the other taxa, which does not

appear in network b). . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 The super network constructed by SuperQ for the five partial gene

trees from Pryor and Bigelow [71], Pryor and Gilbertson [72] show-

ing 63 species of funghi. . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 An example for the NeighborNet algorithm. . . . . . . . . . . . . 54

4.2 The possibilities to connect two connected components in one Neigh-

borNet iteration: a) no component contains an edge, b) one com-

ponent contains an edge, c) both components contain an edge.

Here the dashed lines stand for candidate edges to be added. . . . 55

4.3 a) Before the reduction: a connected component of G consisting of

three vertices x, y, z, a is another vertex of G outside the connected

component. b) After the reduction the connected component in

a) is replaced by a connected component consisting of two vertices

w, v. The dashed lines represent the distances between the vertices

in the component and a. . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 a) Before the first reduction: a connected component consisting

of four vertices w, x, y, z and b) after the first reduction the con-

nected component in a) is replaced by a connected component

consisting of three vertices u, v, z. c) A second reduction results

in a connected component with two vertices s, t. The dashed lines

represent the distances between the vertices in the component and

another vertex a outside the component. . . . . . . . . . . . . . . 55

4.5 Let C2 and C4 be the selected components, then the second selec-

tion step decides which of the end vertices of each component are

connected by an edge. The dashed lines indicate all 4 possible edges. 57

4.6 The circular split network constructed for 33 manB sequences of

the Salmonella dataset using the original NeighborNet algorithm. 61

xiii



LIST OF FIGURES

4.7 The circular split network constructed for 33 manB sequences of

the Salmonella dataset using the balanced TSP weighting. . . . . 62

4.8 The circular split network constructed for 33 manB sequences of

the Salmonella dataset using tree weighting. . . . . . . . . . . . . 62

4.9 The circular split network constructed for 33 manB sequences of

the Salmonella dataset using the GreedyME version of Neighbor-

Net and TSP weighting. . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 a) The overall structure of a phylogenetic tree T ∈ T (S, S ′, S ′′)

for some relevant triple (S = Se, S
′ = Se′ , S

′′ = Se′′) of splits. b) In

case the split system Σ is circular, we can use the special structure

of Σ to pin down the relevant triples: Se = Si,j, Se′ = Si,k and

Se′′ = Sk+1,j for some 1 ≤ i ≤ k < j < n. . . . . . . . . . . . . . . 69

5.2 Phylogenetic networks produced by NeighborNet representing a

treelike (a) and non-treelike (b) distance matrix. . . . . . . . . . . 73

5.3 The stacked bar chart shows the number of distance matrices (out

of 1000) for which the minimum evolution score of the phylogenetic

tree produced by solving an instance of the restricted minimum

evolution problem was equal (light gray), smaller (dark gray) or

larger (white) than the minimum evolution score of the tree pro-

duced by FastME. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 The stacked bar chart shows the number of distance matrices (out

of 100) for which the minimum evolution score of the phylogenetic

tree produced for NeighborNet was equal (light gray), smaller (dark

gray) or larger (white) than the minimum evolution score of the

tree produced by FastME. . . . . . . . . . . . . . . . . . . . . . . 75

5.5 The minimum evolution tree found by NetME within a split sys-

tem constructed by the GreedyME variant of NeighborNet and by

FastME. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.6 The minimum evolution tree found by NetME within a split system

constructed by NeighborNet. . . . . . . . . . . . . . . . . . . . . . 78

xiv



LIST OF FIGURES

5.7 The minimum evolution tree found by NetME within a split sys-

tem constructed by the TSP variant of NeighborNet. The split

grouping Sha169 and Sha182 together is highlighted in red. . . . . 79

6.1 a) A tree T on 6 taxa b) θ(T ) where θ = (e1, e2; f) encodes a tbr

operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 a) A tree T on 6 taxa b) θ(T ) where θ = (e1, e2; f) and f = e2

encodes a spr operation. . . . . . . . . . . . . . . . . . . . . . . 84

6.3 a) A tree T on 6 taxa b) θ(T ) where θ = (e1, e2; f), f = e2 and

|E(P (e1, e2))| = 3 encodes a nni operation. . . . . . . . . . . . . 84

6.4 Given is the tree T on X = {x1, ..., x7}, the dashed lines show the

canonical paths P1 and P6, which both contain the edge e. See

Example for further explanation. . . . . . . . . . . . . . . . . . . 86

6.5 An example of two isomorph plane trees on 7 leaves. . . . . . . . 87

6.6 The six plane tree on seven leaves and a circular ordering π. . . . 88

6.7 a) Given the tree T , the edge f induces the split Sf = Ai+1|(X −
Ai+1,j) and P−f,π is the path from xj to xi+1 and P+

f,π the path from

xj+1 to xi. We consider the tbr operation θ = (e1, e2; f) where

e1 ∈ E(P−f,π) and e2 ∈ E(P+
f,π). b) In θ(T ) = T ′ the edge f ′ induces

the split Sf ′ = Sf , f
′
1 induces the split Sf ′1 = Sf1 , and the edge e1

is split into two edges e′1 and e′′1. The splits induced by edges in

the subtrees adjacent to P (f1, e
′′
1) in T ′ are the same splits as in T . 91

6.8 Given the tree T , the edge f induces the split Sf = Ai+1,j|(X −
Ai+1,j) and P−f,π is the path from xj to xi+1 and P+

f,π the path

from xj+1 to xi. We consider the tbr operation θ = (e1, e2; f)

where e1, e2 /∈ E(P+
f,π) ∪ E(P−f,π). The edge e1 induces the split

Se1 = A1|(X−A1) where y1 ∈ A1 and the edge e2 induces the split

Se2 = A2|(X−A2) where y2 ∈ A2. The ordering of the four element

set Y = {xj, xi+1, y1, y2} is π(Y ) = (y1, xj, y2, xi+1). b) In θ(T ) =

T ′ the ordering of the elements of Y is π(Y ) = (y1, y2, xj, xi+1). . 92

6.9 a) The tree T ′ ∈ Nπ
nni and in b) all four operations θ ∈ Oπ

nni(T )

that result in T ′. Recall that the operation θ = (e1, e2; f) where

f = e1 yields the same tree as θ with f = e2. . . . . . . . . . . . . 94

xv



LIST OF FIGURES

6.10 Given a tree T and θ(e1, e2; f) where f = e1 a) The situation if f is

a pendant edge and b) if f is an interior edge. The edges incident

to f are highlighted bold. . . . . . . . . . . . . . . . . . . . . . . 95

6.11 A tree T onX = {x1, . . . , x8} and a circular ordering π = (x1, . . . , x8),

the edge e has the canonical index (1, 5) the path P−e,π from x2 to x5

and the path P+
e,π from x6 to x1 are highlighted in bold. The canon-

ical paths P5 from x5 to x6 and P1 from x1 to x2 are highlighted

with dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.12 Two caterpillars on Tπ with π = (x1, . . . , xn): a) a skew caterpillar

and b) a centipede (where k = bn/2c). . . . . . . . . . . . . . . . 98

6.13 The three possible trees (ignoring the leaf labelling) on 6 leaves. . 98

6.14 a) A centipede with |E(P ′n−1)| = 2 and |E(P ′1)| = 3. b) A skew

caterpillar where |E(P ′n−1)| = |{e′n−1, e
′
1}| = 2 and |E(P ′1)| =

|{e′1, e′2} ∪ Eo(T ′)| = n− 2. . . . . . . . . . . . . . . . . . . . . . . 101

6.15 The tree T in the proof of Lemma 6.4.8. . . . . . . . . . . . . . . 101

1 a) Type I and b) Type II splits for SuperQ for gene trees with

missing taxa generated from a random tree with 32 taxa. c) Type

I and d) Type II splits for SuperQ for gene trees with 16 taxa

generated by performing random SPR moves. . . . . . . . . . . . 114

xvi



Chapter 1

Introduction

Where do we come from? This is one of the big questions that has been en-

gaging human thought since the first societies were formed. Early answers to

this question predominantly involved the invocation of some kind of creator. An

alternative, and perhaps more satisfying answer, was built upon work by 17th

and 18th century naturalists who started to systematically classify and catalogue

species. In the mid 19th century, Charles Darwin undertook a five year journey to

survey and catalogue species from around the world. Based on the information

from his travels, and his work on selective breeding of plants, he noticed that

species might change from one to another and that different species might share

a common ancestor.

The idea of common ancestry or branching descent can be visualised with a tree

structure. The tree representing the evolution of species is often referred to as

the “Tree of Life”. This theory enabled us to come up with an alternative an-

swer to the question of where do we come from: we come from apes. Of course,

this immediately raises another question: where do apes come from? In fact, it

is theorised that all species on the planet today can be traced back to a single

common ancestor which lived around 4 billion years ago.

The theory of evolution is now well established in the scientific community but

continues to be a commonly discussed topic, as there are several big questions

connected to it, such as: How do species evolve? How are species related? What

1



drives changes in organisms? Are these changes directed or random? And what

constitutes a species?

Charles Darwin and other naturalists until the late 20th century primarily based

their observations of organisms around their external features such as behaviour,

bone structure, skin and fur colouring. These external features are also known

as phenotypic traits. Today there are more sophisticated ways to conduct these

investigations. With the introduction of genetic sequencing and related tech-

nologies, researchers can compare individuals and species at the molecular level.

These technologies generate huge amounts of data, creating a challenge to find

efficient and accurate means for its analysis.

Whether the data is phenotypic or genotypic, the evolutionary relatedness of

groups of organisms (taxa) maybe described by a phylogeny. In many cases the

evolutionary relationships between taxa can be represented by a graph theoreti-

cal object called a phylogenetic tree. A wide range of methods exist to construct

phylogenetic trees. Even so, there are some biological processes that lead to

non-treelike evolution, such as hybridisation, horizontal gene transfer or recombi-

nation. It can also be difficult to distinguish between homology and analogy (see

Figure 1.1 for an example of an analogy), which can lead to ambiguous signals in

the data.

In these cases, the data might be better represented by a phylogenetic network, a

structure that generalizes a tree. Trees just show one of the possible relationships

and discard the rest of the signals supported by the data, while networks keep this

information. The more general structure of the network enables a representation

of ambiguity or a simultaneous representation of a collection of trees.

There are many different kinds of phylogenetic networks and constructing them is

an exciting area of current research [50, 65]. Some of these phylogenetic networks

try to model specific events, however, this thesis is concerned with networks that

give a snapshot of the data and of any existing conflicts. Displaying alterna-

tive evolutionary scenarios with networks can come at the price of quite complex
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Bat Mouse Bird Crocodile

wings wings

four limbs

Figure 1.1: An example of an analogy. They have no common ancestor with
wings, but they inherited their forelimbs from a common ancestor.

visual representations, that can contain crossing edges, making their analysis dif-

ficult. To avoid this complexity we focus on so-called “circular split networks”,

which can always be visualised in two dimensions without crossing edges.

A circular split network is a way of summarising a set of trees. On the other hand

given a circular split network we can extract a number of trees from this network.

In this thesis we will introduce methods to construct circular split networks from

trees and, conversely, use them as the search space to find trees that are optimal

within this search space according to a certain optimisation criterion.

We now give a brief overview of the contents of this thesis. In Chapter 2 we give

an introduction to the area of phylogenetics, including a brief overview of tree

construction principles and an introduction to phylogenetic networks. In addi-

tion we explain the basic concepts and definitions essential for the investigations

carried out later on.

In Chapter 3 we introduce SuperQ, a new method for constructing circular split

networks from collections of trees. It works by first breaking the input trees into

quartet trees (trees containing four taxa), and then stitching these together to

form a circular split network. Compared with previous super network methods,

SuperQ has the advantage of producing a super network that can always be drawn

in the plane, in addition to employing a novel approach to incorporating the edge

weights from the input trees. As well as presenting the SuperQ method, we com-

3



pare its performance to existing super network methods, and present an analysis

of some published data sets as an illustration of its applicability. Whilst SuperQ

was a collaboration effort that was published in [41] my main contribution that

was the implementation of a new way of using the edge weights from the input

trees to calculate weights for the edges in the resulting network. I also designed

and performed simulations to assess SuperQ’s performance.

In Chapter 4, other ways to construct circular split networks are reviewed. More

specifically, the NeighborNet algorithm, and a general framework related to it,

which can be used to produce circular split networks with interesting properties,

are explained. As well as describing these approaches, we present a new way to

construct a circular split network by greedily optimising the so-called minimum

evolution criterion. I implemented and extended the mentioned methods. A bio-

logical dataset consisting of Salmonella sequences is used to illustrate the circular

split networks resulting from these methods.

A common approach taken to construct a phylogenetic tree is to search through

the space of all possible phylogenetic trees on the set of species so as to find

one that optimizes some score function, such as the so-called minimum evolution

criterion. However, this is hampered by the fact that the space of phylogenetic

trees is extremely large in general. An alternative approach, which has received

somewhat less attention in the literature, is to search for trees within some set of

bipartitions or splits of the set of species in question. In Chapter 5 we consider

the problem of searching for trees within a set of splits associated to a circular

split network. Using simulations and a biological dataset, we compare the perfor-

mance of our algorithm when applied to the output of the methods introduced in

Chapter 4 with that of another leading method for searching for minimum evolu-

tion trees in tree space. This approach is based on a preliminary version of this

work described in my Diploma thesis [5]. In particular, I extended the methods

implementation, reformulated its design, designed and performed new tests to

compare and evaluate the method, as well as being involved with an improved

description of our algorithm. The work was published in [6].
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Another approach to search for an optimal tree within tree space is using tree

edit operations. These operations could also be used to search for trees in circular

split systems. Chapter 6 contains answers to several questions, concerning the

structure of the subspace of tree space induced by certain tree edit operations,

that naturally occurs when investigating this idea. We are interested in special

tree edit operations that produce trees that can be found in the same circular split

system as the tree that they are applied to. This work is based on a manuscript

with Taoyang Wu, Andreas Spillner and Vincent Moulton (in preparation). In

this chapter I only present results to which I made major contributions. In partic-

ular, we characterised these special tree edit operations and established formulae

describing the number of trees that can be found by applying one of these oper-

ations to a given tree. This number is dependent on the given tree and therefore

we could establish upper and lower bounds for this number, as well the trees that

lead to these minimum and maximum numbers.

In Chapter 7 we present some conclusions drawn from our investigations are

summarised and give an outlook into future projects and pose some interesting

open questions.
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Chapter 2

Basic concepts and definitions

2.1 Summary

This chapter explains some relevant concepts used in phylogenetics. We first

introduce graphs and trees and then discuss the representation of evolutionary

relationships using phylogenetic trees as well as principles for their construction.

This is followed by the introduction of the concepts of splits and split systems

and their graphical representation as split networks. In the sections concerning

networks we mainly follow [53].

2.2 Graphs and trees

Graphs are a powerful tool to make information accessible. Here we use them to

display evolutionary relatedness of different groups of organisms, which will be

referred to as taxa. First we introduce some basic graph theory.

Definition 2.2.1. (Graph): A graph G is an ordered pair (V,E), consisting of a

non-empty set V of vertices and a set E of edges between the vertices of V , in

which every edge {x, y} is a 2-element subset of V .

The vertex set of graph G is called V (G) and the set of edges E(G). We work with

finite graphs, that is, both sets V (G) and E(G) are finite. The number of vertices

in a graph is its order |V |; analogously the number of edges is written as |E| (in
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general |Z| is used to refer to the number of elements in a set Z). A cluster C

of a set Z is any non-empty proper subset of X, denoted C ⊂ X. A subgraph of

G where all vertices are connected by a path is called a connected component of G.

Given a graph G a vertex x ∈ V (G) is called incident to an edge e ∈ E(G), if

x ∈ e. Every edge e has exactly two vertices that are incident to e. An edge {x, y}
is also written as xy or yx. Two vertices x, y of G are adjacent or neighbours, if

xy is an edge of G. Two distinct edges are adjacent if they share a vertex. The

degree of a vertex x is the number of edges that contain x. If a vertex has degree

1, it is called a leaf. The set of leaves of a graph will be written as L(G). If a

vertex has a higher degree than 1, it is called an internal vertex of G. A vertex

with degree 0 is called isolated vertex. An edge is called a pendant edge if it is

incident to a leaf, and an interior edge otherwise.

v4

v1

v7

v8v10

v2

v3

v5
v6

v9

Figure 2.1: A path from v4 to v7. The edges in the path are highlighted in bold.

A path P in a graph G is a sequence of pairwise distinct vertices x1, x2, . . . , xk

such that xixi+1 ∈ E(G), i = 1 . . . k − 1 (see Figure 2.1 for an example). The

set of the edges in a path P = x1, . . . , xk is called E(P ) = {x1x2, . . . , xk−1xk}.
A cycle is a path x1, . . . , xk with k > 2 vertices where x1 and xk are connected

through an additional edge. A graph G is called acyclic if it does not contain any

cycles. A graph G is called connected, if every pair of vertices in G is connected

by a path. Sometimes we weight the edges in a graph G, that is, we have a map

l : E(G) � R>0, which assigns a weight to all edges e ∈ E(G). The length of

a path P , denoted by `(P ), in a graph is the sum of all edge weights ω(e), and
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e ∈ E(P ). If the edges do not have a weight assigned, then the length of a path

is the number of its edges. The distance dG(x, y) between two vertices x, y in a

graph G is the length of a shortest path from x to y in G, that is the minimum

of the lengths of all possible paths from x to y in G. The total length of a graph

G equals the sum of all of its edge lengths, that is

`(G) =
∑

e∈E(G)

ω(e).

We now define a special type of graph that is central in this thesis.

Definition 2.2.2. (Tree): A tree T is an acyclic connected graph.

We distinguish between rooted trees and unrooted trees. A rooted tree has a

special vertex: the root of the tree. Two trees T1 and T2 are isomorphic if

there exists a bijection i : V (T1) → V (T2) so that xy ∈ E(T1) if and only if

i(x)i(y) ∈ E(T2). Trees that are isomorphic are considered as being equal.

2.3 Phylogenetic trees

Roughly speaking a phylogenetic tree is a tree where all leaves are labelled

uniquely with the elements of some set of taxa. The edges correspond to some

event, for example a phenotypic change through mutation. Formally we need to

define a more general concept, an X-tree. In this section we follow [79]. Let X be

a finite non-empty set, called the label set. This usually corresponds to some set of

taxa or species. An X-tree is defined as an ordered pair (T ,φ), where T = (V,E)

is a tree, and φ : X → V is a map from X into the vertices of T such that each ver-

tex v ∈ V of degree at most two must be contained in φ(X). It is sometimes also

called a semi-labelled tree. A phylogenetic tree is an X-tree where φ is a bijection

between X and the leaves of T . Given a subset X ′ of X, we let T (X ′) denote the

tree consisting of the minimum subtree of T that connects all of the vertices in X ′.

An unrooted phylogenetic tree has no vertices with degree 2. Binary unrooted trees

are the trees whose internal vertices all have degree 3 (see Figure 2.2a). A binary

tree is also called a fully resolved tree. A rooted phylogenetic tree has one vertex
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x1

x2

x3

x4

x5x6

x7

a)

r

x1 x2 x3 x4 x5 x6 x7

b)

Figure 2.2: a) An unrooted and b) a rooted binary phylogenetic tree, the root is
labelled with r.

declared the root (see Figure 2.2b). The edges of phylogenetic trees can have edge

weights assigned. These weights represent evolutionary distances. In some cases

it can be seen as being proportional to the time between different states. While

in a rooted phylogenetic tree taxa are assumed to have common ancestors, in an

unrooted phylogenetic tree this is not made explicit. The tree simply represents

the evolutionary relationship between the taxa. In both representations, the inner

vertices are unlabelled and are seen as intermediate, unknown or extinct taxa.

Note that unless a distinction is made, all phylogenetic trees in this thesis are

considered unrooted and binary.

x1

x2

x3

T

a)

x1

x2

x3

T

b)

Figure 2.3: a) A phylogenetic tree T on 3 taxa and b) the different possibilities
to add another taxa into T .

Given an unrooted binary phylogenetic tree T on n taxa, the number of vertices

in T is 2n − 2 and the number of edges is 2n − 3. With the help of the last
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formulae the number of all possible unrooted binary phylogenetic trees on n taxa

can be determined. If n = 3 there is one possible tree (see Figure 2.3). Adding

a new taxon into this tree, results in 3 new possible trees. These are all possible

trees with 4 taxa. Another taxon could be added to all 5 edges of all 3 trees,

which results in 3× 5 trees. Inductively we can say that the number of possible

trees for n taxa is the number of possible trees for n−1 taxa times the number of

edges in a tree on n− 1 taxa, which is 2(n− 1)− 3 = 2n− 5. Hence the number

of all possible binary trees for n taxa is

3× 5× 7× ...× (2n− 5). (2.1)

We have seen that for 5 taxa there are 15 possible trees. Using Equation 2.1

the number of all possible trees for 10 taxa is 2, 027,025, and for 30 taxa it is

8.687 × 1036. The fact that the number of possible binary trees grows so fast

makes tree construction sometimes difficult.

2.3.1 Phylogenetic construction principles and methods

There are two main approaches used to construct phylogenetic trees, which are

determined by the kind of input data they use [29]. Character-based methods

use character data, which in the biological context, are usually either nucleotide

or protein sequences. Distance-based methods use a distance matrix, which are

often calculated from sequence alignments, to construct a phylogenetic tree.

2.3.1.1 Character-based methods

For character-based methods the input is character data, commonly nucleotide

or protein sequences. The sequences are usually aligned. Given two sequences a

and b oven some alphabet A (for example A = {A, T,G,C} for DNA), a pairwise

sequence alignment of a and b is one sequence written underneath the other, such

that each symbol in one string is opposite to exactly one symbol in the other

string. To make both sequences the same length spaces “ ” can be inserted. Note

that we never allow a space to be aligned to a space to ensure there are only a

finite number of possible alignments. In a multiple alignment spaces are inserted
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into the elements of a set of sequences such that they all have the same length.

All sequences of this set are then written underneath each other in a similar way

as to the pairwise alignment (see Figure 2.4).

Scarites

Carenum

Pasimachus

Pheropsophus

Brachinus armiger

Brachinus hirsutus

Aptinus

Pseudomorpha

C T T A G A T C G T A C C A A - - - A A T A T T A C

C T T A G A T C G T A C C A C A - T A C - T T T A C

A T T A G A T C G T A C C A C T A T A A G T T T A C

C T T A G A T C G T T C C A C - - - A C A T A T A C

A T T A G A T C G T A C C A C - - - A T A T A T T C

A T T A G A T C G T A C C A C - - - A T A T A T A C

C T T A G A T C G T A C C A C - - - A C A A T T A C

C T T A G A T C G T A C C - - - - - A C A A A T A C

Figure 2.4: An example for a simple multiple sequence alignment for different
genera of beetles in the family Carabidae.

Common construction principles for phylogenetic trees from character data are

maximum parsimony [27], maximum likelihood [28] and Bayesian inference [89].

Constructing a phylogeny following the maximum parsimony principle involves

choosing the least complex explanation for the data. Finding a phylogenetic tree

that explains a given multiple sequence alignment using a minimal number of evo-

lutionary events is called the large maximum parsimony problem and is known

to be NP-hard [34], essentially because of the large number of possible trees (see

Section 2.1). Finding a labelling for a given tree T and a multiple sequence align-

ment M that assigns hypothetical ancestor sequences xi to the internal vertices

such that
∑

xrxs∈E(T ) diff(xr, xs), where diff(xr, xs) is the number of different

characters between two sequences xr and xs, is minimised, is called the small

maximum parsimony problem and can be solved efficiently with the Fitch algo-

rithm [33].

Construction methods that follow the maximum likelihood principle usually try

to maximise the likelihood of generating the given multiple sequence alignment

M along a given tree T with edge lengths given by ω under a given model of se-

quence evolution E. That is, they try to maximise the probability P (M |T, ω,E)

that M occurs, by carefully selecting T and ω. There are different models of evo-

11



lution that could be used. A simple one is the Jukes Cantor model of evolution

[55], which assumes that sequences evolve through mutation and speciation. The

maximum likelihood approach is quite popular, because it tries to take relevant

biological processes that generated the data into account. As with the large max-

imum parsimony problem, the maximum likelihood problem is NP-hard [75].

The aim of Bayesian inference is to estimate the distribution P (T |M), called the

posterior probability, which is the probability of observing tree T given a multiple

sequence alignment M . It can be obtained using the Bayes’ Theorem. Usually it

is impossible to solve the equation given by the Bayes’ Theorem analytically and

the Markov-Chain Monte Carlo [54] approach is used. This approach constructs

a chain of phylogenetic trees. The stationary distribution of these trees then

approximates the posterior probability distribution. This approach has become

very popular recently as it permits complicated models of evolution to be used.

2.3.1.2 Distance-based methods

The comparison of species through one or more attributes, for example sequences,

often leads to a score for measuring their difference. This score can be thought

of as a function D : X ×X � R≥0 that assigns a non-negative real number to

each given pair of elements in X, which represents the distance between them.

In general two species are seen as closely related if the distance between them

is small. The distance between sequences can be found in different ways. For

example, the Hamming distance defines a simple measure for the difference of

two character sequences by counting the number of positions they differ in [43].

The Hamming distance has some properties that also apply to other distance

measures. Usually the distance between two sequences is larger than zero and

the distance of a sequence to itself is zero, that is D(x, y) ≥ 0 for all x, y and

if x = y then D(x, y) = 0. Distance measures are also usually symmetric, that

is, D(x, y) = D(y, x) for all x, y ∈ X. If the function also fulfils the triangle

inequality (D(x, z) ≤ D(x, y) + D(y, z), x, y, z ∈ X) it is called a metric. The

values of a distance function can also be thought of as a symmetric matrix D,
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called a distance matrix, having |X| × |X| entries and a diagonal of zeros.

Given a distance matrix D on X, it is natural to try to find a weighted tree

with leaf set X that somehow represents D. As mentioned in section 2.2 the

distance between two taxa in a tree is given by the total length of the path

between them in the tree. Given a distance matrix D on X, when choosing

the edge lengths in a tree T with leaf set X to represent D, it is thus desir-

able that the distances induced by the tree are close to the distances in D. Let

`ωD
(x, y) be the distances between x and y derived from T and D the given dis-

tance matrix on X. Then the edge lengths ω(e) are sometimes chosen such that∑
x,y∈X,x 6=y

(
`ωD

(x, y) − D(x, y)
)2

is minimal. This is called the ordinary least

squares method [29].

We can estimate the edge weights according to the ordinary least squares method

by using the following formulae (cf. [11, p. 136], [76]). For an internal edge

e = {u,w}, letting vi, 1 ≤ i ≤ 4, denote the four vertices in V − {u,w} that are

adjacent to u or w (cf. Figure 2.5a), we define the subset Xi ⊆ X consisting of

those x ∈ X for which the unique path from u to x in T contains vertex vi. Then

we have

ωD(e) =
1

4(n1 + n2)(n3 + n4)

(
(
n

n4

+
n

n3

+
n

n2

+
n

n1

− 4)P0 (2.2)

+
n1 + n2

n1n2

((2n2 − n)P1 + (2n1 − n)P2)

+
n3 + n4

n3n4

((2n4 − n)P3 + (2n3 − n)P4)
)

= ωD(X1, X2, X3, X4),

where P0 =
∑

x∈X1∪X2,y∈X−(X1∪X2) D(x, y), ni = |Xi| and Pi =
∑

x∈Xi,y∈X−Xi
D(x, y),

1 ≤ i ≤ 4. Similarly, for every external edge e (cf. Figure 2.5b) we have

ωD(e) =
1

4(n1n2)

(
(1 + n1 + n2)P0 − (1 + n1 − n2)P1 − (1− n1 + n2)P2

)
(2.3)

= ωD(X1, X2).
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Note that in both of these formulae ωD(e) only depend on the subsets of X that

form the leaf sets of the subtrees incident to the endpoints of e and not on the

internal structure of these subtrees.

e

X1

X2

X3

X4

u w

v1

v2 v4

v3

a)

e

X1

X2

xu

v1

v2

b)

Figure 2.5: Schematic representation of the situation around (a) an internal edge
e and (b) an external edge e of a phylogenetic tree referred to in the context of
Formulae 2.2 and 2.3.

Different criteria can be used to determine how close a given tree based metric is

to a given distance [17, 22]. For example, given a tree T and a distance matrix

D on X, we can fit weights on all edges using the ordinary least squares method.

The minimum evolution score for T is the sum of the weights of all edges in T .

A tree with the smallest possible score is called a minimum evolution tree [17].

Finding a minimum evolution tree in the set of all possible trees for the taxa set,

is called the minimum evolution problem.

Another criterion is the balanced minimum evolution criterion. In contrast to the

minimum evolution criterion the edge weights for a given tree T and a distance

matrix D on a set X are not estimated using the ordinary least squares method,

but a scheme introduced by Pauplin [69]. The weights of external edges can be

estimated by

ω(e) =
1

2
(D(X1, x) +D(X2, x)−D(X1, X2))

and internal edges by

ω(e) =
1

4
(D(X1, X3)+D(X2, X4)+D(X1, X4)+D(X2, X3))−1

2
(D(X1, X2)+D(X3, X4)),

where Xi,⊂ X denotes the leaf set of the subtrees adjacent to the edge e and
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x is a single leaf at the end of an external edge (see Figure 2.5). The distances

D(Xi, Xj) are the balanced average distances between the sets of taxa Xi to Xj,

viz

D(Xi, Xj) = D(x, y)

if Xi = {x} and Xj = {y} and

D(Xi, Xj) =
1

2
(D(Xi, Xj′) +D(Xi, Xj′′))

if Xj contains two subsets Xj′ , Xj′′ that are the leaf sets of two distinct subtrees

of Tj and Xj′ ∪Xj′′ = Xj. In contrast to the ordinary least squares estimation,

where the length of each edge just depends on the leaf sets of the subtrees adja-

cent to the edges, the internal structure of these subtrees plays an important role

in the calculation of the edge length.

In the last part of this section, we briefly review some other distance-based meth-

ods for phylogenetic tree construction. In the beginning of phylogenetic tool de-

velopment, simple algorithms like the UPGMA (unweighted pair group method

using arithmetic averages) algorithm [81] were used. This method works by ag-

glomeration. Another widely used method is the NeighborJoining algorithm.

Introduced by N. Saitou and M. Nei [77], it is also an agglomerative method to

construct a phylogenetic tree from distance data similar to the UPMGA algo-

rithm. We now review this in slightly more detail, because it is relevant later in

this thesis.

Given X with |X| = n and distance D on X the algorithm starts with initialising

a star tree where the leaves are labelled with the elements of X (see Figure 2.6a)

and a set of clusters C = {C1, . . . , Cn}, where each cluster contains one taxon.

The distances between the clusters are initialised by the distances between the

taxa they contain. Two clusters that minimise a selection criterion, called the

Q-criterion [13] are chosen and seen as neighbors. The Q-criterion is given as
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follows:

Q(Ci, Cj) =(|C| − 2)D(Ci, Cj)−
∑

Ct∈C\Ci

D(Ci, Ct)

−
∑

Ct∈C\Cj

D(Cj, Ct)
(2.4)

The two chosen clusters Ci∗ and Cj∗ are thus merged into C∗ and the two vertices

are pulled out of the star tree to form a cherry. This is illustrated in Figure 2.6 a,

where cluster C2 and C3 are chosen to be merged. The distances from the newly

formed cluster C∗ to any other cluster Ct from the set of clusters is given by

D(C∗, Ct) = 1
2
(D(Ci∗, Ct) + D(Cj∗, Ct) −D(Ci∗, Cj∗)). These steps are repeated

until the tree is fully resolved, which can be seen in Figure 2.6b - d.

It has been shown that NeighborJoining greedily optimises the balanced mini-

mum evolution criterion [35]. This means, that in each selection the algorithm

chooses the local optimum according to this criterion; note that this approach

does not always also lead to a global optimum. The resulting tree is called the

NeighborJoining tree.

In general, the advantage of using distances is that different types of data can

be used as long as a distance measure can be defined. Usually distance based

methods are much faster than character based ones, although this can come at

a price as the data is usually “compressed” when a distance is computed. The

balanced minimum evolution problem is known to be NP-hard, while, to the best

of our knowledge, the minimum evolution problem is not proven to be NP-hard,

though the structure of the problem suggests that it might be NP-hard.

One heuristic for finding optimal minimum evolution and balanced minimum

evolution trees is FastME [21]. It works by modifying a starting tree using tree

edit operations, like tree bisection and reconnection (TBR), subprune and regraft

(SPR) or nearest neighbour interchange (NNI). This locale search is repeated until

the tree can not be significantly improved any more.
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Figure 2.6: An illustration of the NeighborJoining algorithm on X = {x1, . . . , x6}.

2.3.2 Characterising phylogenetic trees

Phylogenetic trees can be characterised mathematically in various ways (see [25]).

Three ways will be important in this thesis; one based on splits, one on quartets

and the other on distances.

2.3.2.1 Splits and split systems

P. Buneman [16] established the fundamental equivalence between X-trees and

a special type of collection of bipartitions or split of the set X. First, note that

each edge in an X-tree induces a bipartition on X (see Figure 2.7). We now

formalise this notion.

Definition 2.3.1. (Split): A split S = A|B(= B|A) is a bipartition of X into

two non-empty subsets A and B, which can also be called the two sides of the

split.

17



e

x1 x2
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x6

x7

TA

TB

T

Figure 2.7: A phylogenetic tree on the set of taxa X = {x1, . . . , x7}. The edge e
corresponds to the split Se = {x6, x7, x1}|{x2, x3, x4, x5}. If e is deleted T decom-
poses into TA and TB where L(TA) = {x6, x7, x1} and L(TB) = {x2, x3, x4, x5}.
The weight of the split Se is the length of e.

The split induced by edge e is denoted Se. If |A| = 1 or |B| = 1, then the split

A|B is called trivial. In trees, trivial splits correspond to pendant edges. A set

of splits is called a split system. For each edge e in a weighted phylogenetic tree

on X, the split corresponding to e can be assigned with the length of the edge.

More generally, we will usually assign a non-negative weight µ(S) to a split S in

any given split system. Formally, a weighted split system is a split system Σ on

X and a weight function µ : Σ � R, that assigns a weight to each split S ∈ Σ.

It is well known that every phylogenetic tree T is completely determined by the

split system that arises from T (see [16]). Every two splits in a split system Σ

that is induced by a tree have the following important property [16] (see Figure

2.8).

Definition 2.3.2. (Compatible) Two splits S1 = A1|B1 and S2 = A2|B2 are

compatible if one of the intersections A1∩A2, A1∩B2, B1∩A2, B1∩A1 is empty.

On the other hand a split system in which every pair of splits is compatible can

always be represented by a necessarily unique X-tree [16]. Thus X-trees and

compatible split systems on X are in one-to-one correspondence.
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Figure 2.8: A split A1|B1 = {x4, x5, x6, x7, x1}|{x2, x3} that is compatible with
Se in Figure 2.7.

2.3.2.2 Quartets

Another way to determine an X-tree is by a set of quartets.

Definition 2.3.3. (Quartet tree) Given a phylogenetic tree T on a set X, and

any set X ′ ⊆ X of four taxa, the smallest subtree T (X ′) of T that connects the

four given taxa is called the quartet tree for the given taxa.

In case T (X ′) has precisely two distinct vertices u and v of degree three, the path

P connecting u and v in T (X ′) separates two of the four given taxa, say a and a′,

from the remaining two taxa, say b and b′ (see Figure 2.9). We denote this fact

by aa′|bb′ and refer to aa′|bb′ as the quartet induced by the given phylogenetic

tree on the taxa a, a′, b and b′. The weight κ(q) of a quartet q induced by a

phylogenetic tree is the total length of the edges on the path P . It is well-known

that the set of quartets induced by a tree determines the tree (that is no other

tree induces the same set of quartets) [79, Chapter 6].

2.3.2.3 Distances

An X-tree can also be characterised by the distances that it induces on X, using

the following condition:

Definition 2.3.4. (4-point condition) Let D be a distance function on a set X.
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Figure 2.9: The smallest subtree (highlighted with bold edges) of the phylogenetic
tree T that connects the taxa in {x2, x3, x4, x7}. It gives rise to the quartet
q = x7x2|x3x4 whose weight is the total length of the bold purple edges.
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Figure 2.10: The distances in a tree on the 4 taxa w, x, y, z are highlighted. In
a) D(w, x) and D(y, z) are highlighted in green and the distances D(x, y) and
D(w, z) in blue. In b) the distances D(w, y) and D(x, z) are highlighted in red.
In this example D(w, x) + d(y, z) must be smaller than D(w, y) + D(x, z) and
D(w, z) + D(x, y). Using any other labelling for the leaves it is easy to see that
the 4-point condition always holds.

The 4-point condition is fulfilled for D if the following holds for all w, x, y, z ∈ X:

D(w, x) +D(y, z) ≤ max{D(w, y) +D(x, z), D(w, z) +D(x, y)}.

It is easy to see that the distances induced by a weighted phylogenetic tree satisfy

this condition (see Figure 2.10). Conversely, if the 4-point condition is fulfilled

there exists an X-tree T and the distances between the leaves induced by T are

equal to D on X [16].
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Figure 2.11: A recombination network constructed from binary sequences. Each
vertex is labelled with a binary sequence, the sequences of the internal vertices
can be seen as ancestor sequences. This network shows one recombination event
between sequences 11000 and 00100 that combined and produced one offspring
sequence 11100.

2.4 Phylogenetic networks

A phylogenetic network can be thought of as the generalisation of a phylogenetic

tree. Evolutionary data often contains conflicting signals. These signals can

arise for different reasons; they can be the result of biological conflicts, caused

by several biological processes; or through estimation errors, like inappropriate

sampling, incorrect data or model-mis-specification [65]. Phylogenetic networks

are useful for displaying such data conflicts.

In general, a phylogenetic network is any graph used to present evolutionary

relationships between a set of taxa that labels some of its vertices (usually the

leaves) [53]. In order to reconstruct evolution, networks that explicitly represent

an evolutionary event, like hybridisation, horizontal gene transfer, recombination,

gene conversion, duplication or loss happened, are desirable. However, they are

not easy to construct [53]. Such networks are often called explicit or evolutionary

phylogenetic networks. Vertices in these networks can be seen as representing

ancestors. Explicit networks are usually rooted, that is just as for rooted trees,

they have a special vertex or root representing the most common ancestor. Some

common rooted phylogenetic networks are, for example, cluster [51], hybridisa-
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tion [61] and recombination networks [37] (see Figure 2.12 for an example).

In contrast a data-displaying or implicit network displays conflicting patterns

in the data; the vertices do not necessarily represent common ancestors. In

this thesis the focus is on implicit phylogenetic networks. These are usually not

rooted. The main examples of implicit networks are split networks and quasi-

median networks [53]. Split networks are explained in more detail in the next

section and some new methods for their construction from a set of trees as well

as from distance data are discussed in Chapters 3 and 4.

2.4.1 Split networks

Split networks are a generalisation of phylogenetic trees that can be used to

visualise split systems that are not necessarily compatible [4, 50]. As already

mentioned, compatible split systems can always be represented as an (unrooted)

phylogenetic tree. Similarly, an arbitrary set of splits can always be visualised by

a split network, in which one or more edges represent a split. A special property

of these edges is that if they are all deleted, the split network breaks apart into

two connected components [24]. The two sides of the split correspond to the

elements of X in the two components, as illustrated in Figure 2.12.

Before we can formally define a split network we have to define some related

concepts. Let G be a finite, connected graph, C be a finite set of labels, which we

call colors, and σ : E(G)→ C be a mapping that assigns a color to each edge in

G such that no two adjacent edges are given the same color. An undirected path

P in G with length `(P ) = t is called properly colored, if all edges along the path

have different colors, that is |σ(P )| = t. If for any two vertices all shortest paths

between these vertices are properly colored and use the same set of colors, then

σ is called an isometric coloring. A split graph is a connected graph G together

with an isometric and surjective edge coloring σ : E(G)→ C.

Definition 2.4.1. (Split network) [53] Let Σ be a set of splits on X. A split net-

work N = (V,E, σ, λ) that represents Σ is given by a split graph (G, σ : E(G)→
Σ) and a vertex labelling λ : X → V (G) such that for every split S = A|B ∈ Σ,
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Figure 2.12: a) A split network on X = {x1, x2, x3, x4}. b) The deletion of the
blue edges leads to two connected components one contains the vertices x1, x2 the
other one x3, x4, therefore the blue edges correspond to the split {x1, x2}|{x3, x4}.

we have

A =
⋃
v∈V 0

S

λ−1(v) and B =
⋃
v∈V 1

S

λ−1(v)

where V 0
S is the vertex set of one of the two connected components G0

c that result

if all edges with the same color c are deleted and V 1
S the vertex set of the other

component.

Instead of using colors, we will represent edges that correspond to the same split

(or would have the same color) by bands of parallel edges, and the length of these

edges are proportional to the weight of the split. Boxes in the network corre-

spond to pairs of splits that are not compatible, thus indicating conflict in the

two groupings of the taxa in X. An example of a split network is illustrated in

Figure 2.14. If the split system is pairwise compatible, the split network is just

the unique tree corresponding to the system. Note that such a representation is

always possible, although the networks in general can be very complicated and

therefore difficult to visualise.

Restrictions to split systems can be applied to avoid overly complicated networks.

One such restriction is the existence of a special ordering of the taxa in X.

Formally, a split system Σ on X is circular if there is an ordering π = (x1, . . . , xn)

of the elements of X, such that all splits S ∈ Σ have the form:

S := Si,j = {xi+1, . . . , xj}|{xj+1, . . . , xn, x1, . . . , xi}
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Figure 2.13: a) A circular split system, b) two links are deleted, which leads to
two connected paths, which vertex labels correspond to the two sides of the split
S = {x1, x2, x3}|{x4, x5}.

for some i, j, 1 ≤ i < j ≤ n. If such an ordering exists, it is called a circular

ordering (relative to Σ). A split that is circular respects a certain circular order-

ing. Note that every compatible split system is a circular split system [4].

To get a better idea of circular split systems, one can draw the taxa on a circle

as seen in Figure 2.13a. If two links in this circle are deleted then the circle

decomposes into two components. This decomposition gives a split of the taxa.

In this manner a circular ordering π gives rise to the set of all possible splits that

respect π, called the full circular split system induced by π.

A circular split system can always be represented as an outer-labelled planar split

network, which means it is always drawable in the plane and therefore easier to

visualise [24]. We will refer to this kind of network as a circular split network. A

more complicated example of such a network is illustrated in Figure 2.14.

There are various methods to construct split networks. For example a popular

method that constructs a circular split network from distances is the NeighborNet

algorithm [14], which extends the NeighborJoining algorithm (see Section 2.3.1.2)

and is reviewed in more detail in Chapter 4.

Another popular way of constructing split networks is from a collection of trees.
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For a set of trees where each tree has the same leaf set, strict consensus or

majority consensus networks can be computed by strictly just including all splits

that occur in all trees in the input or including all splits that occur in more than

50% of the input trees [53]. A set of partial trees, trees with incomplete leaf sets,

can be summarised in a super network. Common methods to construct super

networks from partial trees are Q-imputation [47] and Z-Closure [52, 88]. Z-

closure essentially works by converting the input trees into a collection of partial

bipartitions where the partial bipartitions correspond to edges in the input trees,

and then iteratively applying a set-theoretical rule so as to produce new collections

of bipartitions of the total leaf set. This collection is then represented by a split

network. Q-imputation, on the other hand, first completes the partial trees to

trees on the total leaf set, using quartets and then constructs a consensus network

for these trees.

x1

x2

x3 x4

x5

x6

x7

Figure 2.14: An example for a split network on X = {x1, ..., x7}. The band of
bold parallel edges represents to the split S1 = {x7, x1, x2, x3}|{x4, x5, x6}. The
shaded box indicates that the splits S1 and S2 = {x5, x6, x7, x1, x2}|{x3, x4} are
incompatible.

2.5 Concluding remarks

In this chapter we have introduced some fundamental concepts in phylogenetics

which underline the research presented in this thesis. We saw that a phylogenetic

tree is a basic and straightforward approach to represent evolutionary relation-
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ships between species and that there are different ways to characterise such trees

mathematically, in particular, splits, which play an important role in this thesis.

A phylogenetic tree might not always be appropriate to capture complex evolu-

tionary histories. In the following chapter we describe a method to summarise

information from different trees in a circular split network.
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Chapter 3

SuperQ: Computing super

networks from quartets

This chapter is an adaptation of the text presented in the paper: S. Grünewald, A.

Spillner, S. Bastkowski, A. Bögershausen, V. Moulton. SuperQ: Computing Super

networks from Quartets. IEEE/ACM Transactions on Computational Biology

and Bioinformatics, 10(1): 151-160, 2013.

3.1 Summary

In this chapter, we introduce SuperQ, a new method for constructing split net-

works from collections of trees. It works by first breaking the input trees into quar-

tet trees, and then stitching these together to form a split network. This stitching

process is performed using an adaptation of the QNet method for split network

reconstruction [38]. Compared with previous super network methods, SuperQ

has the advantage of producing a super network that can always be drawn in the

plane, in addition to employing a novel approach to incorporating the edge weights

from the input trees. As well as presenting the SuperQ method, we compare its
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performance to the Z-closure and Q-imputation super network methods, and also

present an analysis of some published data sets as an illustration of its applica-

bility. SuperQ is freely available at http://www.uea.ac.uk/computing/superq.

3.2 Background

In phylogenetics it is common practice to summarise a collection of phylogenetic

trees as a consensus tree [12] or, in case the trees are on different leaf sets (that

is they are partial trees), as a super tree [8]. Even so, such trees can be limited

by the fact that conflicting groupings in the input trees cannot be represented in

any single tree. In such situations, it can be helpful to also construct a consen-

sus network or a super network as described in the last chapter, since these can

permit the visual representation of such conflicts, though at the price that a tree

is no longer necessarily reconstructed.

In a similar way to super trees, super networks can be regarded as a special

type of phylogenetic network which is used to give a visual representation of a

collection of partial phylogenetic trees. Here we shall be only concerned using

super networks to represent unrooted phylogenetic trees: there are some variants

that can be used for rooted phylogenetic trees (cf. for example Huson et al. [53,

Chapter 11]), but methods for their construction are still in quite early stages of

development. Super networks have been used for applications such as visualising

large collections of trees (arising for example from Bayesian tree inference) [46],

analysis of multiple gene trees [52], the study of genome size evolution [62], the

study of species radiations and species delimitation [64] and the analysis of con-

gruence in phylogenetic data [59].

In this chapter we describe a new method for constructing super networks from

a collection of partial, unrooted phylogenetic trees. As already mentioned Z-

Closure and Q-imputation (see Section 2.4.1) are available to construct such super

networks. SuperQ, works in a different manner. Essentially, each of the input

partial trees is first broken down into a collection of quartet trees, after which the
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collection is stitched together to form a split network. To perform this stitching

process, we adapt the QNet algorithm for constructing split networks from quartet

trees [38, 40], and subsequently compute edge lengths for the resulting network

by optimising a function of the edge lengths of the input trees. SuperQ has the

advantage that, in contrast to Z-closure and Q-imputation, it is guaranteed to

generate a circular split network. Such networks have proven useful for analysing

various types of phylogenetic data [66], and can be easier to interpret than the

sometimes quite complex networks that Z-closure and Q-imputation can produce.

3.3 Method

We first introduce some terminology and notation - more details concerning these

and related concepts may be found for example in [25, 79]. We then describe the

SuperQ method. Note that a preliminary version of this method is presented in

[39] and that the main new contribution described in this thesis are steps 1 and

4, which are described in detail in this section.

3.3.1 Quartets and networks

To build super networks, we will use the quartets induced by the input trees

(see Section 2.3.2.2). Any split network on X induces a collection of quartets as

follows. Consider the system Σ of weighted splits visualised by the network. A

quartet q = aa′|bb′ is induced by Σ if there exists a split S = A|B in Σ such that

a and a′ are contained in A while b and b′ are contained in B. We will also say

that the split S extends the quartet q. The weight κ(q) of any quartet q induced

by Σ is the total weight (that is the sum of the weights) of those splits in Σ that

extend q. Note that the quartets induced by a phylogenetic tree T , as described

in Section 2.3.2.2 are precisely those induced by the corresponding compatible

split system. Moreover, the weight assigned to any quartet aa′|bb′ according to

this split system is just the sum of the weights of those edges that lie on the path

P in the smallest subtree of T spanned by a, a′, b, b′ as also described before.
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3.3.2 Description of the method

We assume that we are given as input a collection T = {T1, T2, . . . , Tt} of phylo-

genetic trees. Note that these trees may be partial, that is, they need not be all

on the same set of taxa. We shall let X denote the set consisting of all those taxa

that are a leaf of at least one tree in T. In particular, the set of taxa labelling any

tree in T is always a subset of X. SuperQ computes a split network summarising

T using the following five steps:

Step 1: Optionally scale the trees in T.

Step 2: Break up all of the trees in T into quartets to produce a collection Q of

weighted quartets.

Step 3: Input Q into the QNet algorithm to obtain a split system Σ.

Step 4: Compute suitable weights for the splits in Σ.

Step 5: Visualise the weighted split system Σ by a circular split network.

We now present a more detailed description for each of these steps.

3.3.2.1 Step 1: Scaling the input trees

As with previous super network (and super tree) methods that use edge length

information from the input trees (see for example [9]), our method implicitly

assumes that a unit of edge length has the same interpretation for all of the trees

in the input set T. Clearly, this might not always be the case. For example, the

trees in T could be the result of different studies or be produced using different

methods, and so the trees could have different scales. To cope with this, we first

scale each of the input trees Ti, i = 1, 2, . . . , t, by a non-negative factor σi. These

factors are chosen so that the function

h(σ1, σ2, . . . , σt) =
∑

1≤j<k≤t

∑
q∈Q(Tj)∩Q(Tk)

(σj · κj(q)− σk · κk(q))2 (3.1)

is minimised under the constraint that σ1 + σ2 + · · · + σt = 1 must hold, where

Q(Ti) denotes the collection of quartets induced by Ti and κi(q) denotes the
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induced weight of the quartet q in Q(Ti), 1 ≤ i ≤ t. Intuitively, (3.1) measures,

for each pair of distinct trees T, T ′ ∈ T and each quartet q induced by both T

and T ′, the difference in the induced weight of the quartet q in T and T ′ and aims

to minimise the sum of all these squared differences. Note that minimising (3.1)

amounts to solving a so-called quadratic program for the unknown scaling factors

σi, which can be done efficiently using well-known algorithms (see for example

[23]).

3.3.2.2 Step 2: Breaking the input trees into quartets

Let Q be the collection of quartets that can be formed using elements in X. We

assign a weight κ∗(q) to each quartet q = aa′|bb′ in Q as follows. Let ` denote

the number of trees in T that contain all of the four taxa a, a′, b and b′. If ` = 0

we simply put κ∗(q) = 0. Otherwise we let κ∗(q) be the sum of the weights κi(q)

over those trees Ti in T that induce q divided by `. In other words, q is assigned

the average weight that it receives over all those trees in T that relate all four

taxa involved in q.

3.3.2.3 Step 3: Applying QNet

QNet is described in [40], but as it is a key step in our approach we briefly

summarise its main features here. It is a heuristic algorithm that computes,

for any input collection Q of weighted quartets (such as the one computed in

Step 2), an ordering x1, x2, . . . , xn of the taxa in X. As described in Chapter 2

such ordering induces a full circular split system Σ. It has the useful property that

it (and any subcollection of splits from this system) can always be represented by

an outer-labelled planar split network, that is, a circular split network as seen in

Section 2.4.1 Figure 2.14 that can be drawn in the plane so that all taxa lie on the

outside of the network (cf. Dress and Huson [24] for more details). Essentially,

QNet tries to construct an ordering of X such that for the associated split system

Σ the total weight of all those quartets in Q that are extended by some split in

Σ is as large as possible. In this way it is hoped that Σ will capture a large

proportion of the structural information contained in Q.
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3.3.2.4 Step 4: Computing split weights

Suppose that Σ has been computed using QNet in Step 3 using the collection Q

of quartets computed in Step 2. Let S1, S2, . . . , Sk be an arbitrary ordering of the

splits in Σ. We now use the weights of the quartets in Q to compute weights for

each of the splits in Σ (which will correspond to edge lengths in the split network

representing Σ). Let Q∗ = {q1, q2, . . . , qm} be the set of those quartets q in Q for

which the four taxa present in q appear together in at least one tree in T. Note

that, since the set of taxa in any of the trees in T can be a proper subset of X,

Q∗ can be a proper subset of Q. One can think of Q∗ as the set of those quartets

q in Q for which we have relevant information coming from the input trees about

the target weight κ∗(q) of q.

Computing weights for the splits in Σ amounts to assigning a non-negative real

number µ(S) to each split S ∈ Σ so that the induced vector of quartet weights

is as close as possible to the vector of target weights in the least squares sense.

More formally, we minimise the following objective function

g(µ(S1), µ(S2), . . . , µ(Sk)) =
∑
q∈Q∗

(κ∗(q)−
∑
S∈Σ

S extends q

µ(S))2. (3.2)

Note that this optimisation problem does not necessarily have a unique solution.

This is partly due to the fact that the weights of the trivial splits in Σ, that is,

splits of the form {x}|X − {x} for some element x ∈ X, do not have any impact

on the value of the objective function. The reason for this is that quartets do not

convey any information about the length of the pendant edges in a phylogenetic

tree or, equivalently, the weight of the trivial splits. Therefore, in the following

we assume that all trivial splits have been removed from Σ.

Even with all trivial splits removed, (3.2) need not have a unique solution. To

shed some light on this issue, it is helpful to consider the m × k-matrix M =

(Mi,j) with entries from the set {0, 1} that is defined by putting Mi,j = 1 if

and only if the quartet qi is extended by the split Sj. Then, arranging the split

weights we want to compute as well as the target quartet weights in vectors
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µ = (µ(S1), µ(S2), . . . , µ(Sk)) and κ∗ = (κ∗(q1), κ∗(q2), . . . , κ∗(qm)), respectively,

we can write (3.2) as

g(µ) = ‖κ∗ −M · µ‖2 (3.3)

where ‖w‖2 denotes the squared Euclidean length w2
1 + w2

2 + · · · + w2
m of an m-

dimensional vector w = (w1, w2, . . . , wm) with real-valued entries.

Now, it is well known that (3.3) has a unique optimal solution if and only if the

matrix M has full rank, that is, the product M · µ yields the null vector only in

case µ is the null vector. Therefore, in case where M does not have full rank, we

offer the user the option to add a second optimisation step as follows. Suppose

we have an arbitrary optimal solution µ0 of (3.3). Then, guided by the minimum

evolution principle used to reconstruct phylogenetic trees (see for example [17]),

among all µ with M ·µ = 0, we compute one that minimises some suitably chosen

objective function g′(µ) subject to the constraint that the resulting vector of split

weights µ0 + µ has non-negative entries.

Below we use a linear objective function for which an optimal solution can be

found very efficiently using linear programming [63] although, at least theoreti-

cally, the solution need not be unique. Note that there is some freedom in the

choice of the coefficients in the objective function. In preliminary tests, we found

that treating all splits in Σ equally could lead to a bias towards balanced splits,

that is, splits S = A|B with A and B containing roughly the same number of

elements. The reason for this, is that balanced splits display more quartets than

unbalanced ones and, therefore, have a bigger impact on the resulting quartet

weights. To address this bias, in the following we shall use the objective function

g′(µ) =
∑

S=A|B∈Σ

|A| · (|A| − 1) · |B| · (|B| − 1) · µ(S), (3.4)

that is, the coefficient for the split S = A|B corresponds to the number of quartets

aa′|bb′ that can be formed by selecting a and a′ from A and b and b′ from B.
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3.3.2.5 Step 5: Computing a split network for Σ

We use the algorithm presented in [24] and implemented in the SplitsTree software

package [50] to compute a split network visualising the split system Σ computed

in Step 4. As noted above, since Σ is circular, this algorithm is guaranteed to

produce a circular split network. To ease the readability of the network, at this

stage we put the trivial splits back into Σ. Each trivial split as assigned the same

weight, namely the average weight of the non-trivial splits in Σ.

3.3.3 Implementation and properties of SuperQ

SuperQ has been implemented using the Java programming language. It in-

cludes the option to switch off the scaling of the input trees and also provides

alternatives to objective function (3.4). The method for filtering the resulting

split system described in [38] has also been integrated into SuperQ: The user can

provide a real-valued threshold t, 0 < t ≤ 1, to remove from Σ any split S for

which there exists some other split S ′ in Σ such that S and S ′ are not compatible

and the weight of S is less than a fraction t of the weight of S ′. The imple-

mentation of SuperQ is freely available under the GNU general public license 3.0

at http://www.uea.ac.uk/computing/superq. We used this implementation in

the computational experiments described below (using the scaling of input trees,

objective function (3.4) and a threshold t = 0.1), which were performed on a PC

with an Intel Core 2 Quad 2.4 GHz CPU, with 8 GB of main memory using the

operating system Ubuntu (version 11.04).

The run time of our implementation is superpolynomial in the worst case. This

is due to the fact that Steps 1 and 4, where the input trees are scaled and

suitable weights for the splits in Σ are computed, involve solving quadratic and

linear programs. This is done in the current implementation using the algorithms

available through the Gurobi Optimiser, version 4.5 (www.gurobi.com). The

other steps of SuperQ, in particular computing the split system Σ, can be done

in O(t · n4) time where n is the number of taxa in |X| and t is the number of

trees in T.
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3.4 Results

In this section we present the results of our investigation on the performance of

SuperQ for simulated data sets and biological data sets.

3.4.1 Simulations

In view of the fact that SuperQ is a heuristic for finding a solution for a general-

isation of the super tree problem, which is known to be NP-hard in general [83],

there is no guarantee that it will always produce a split system that induces all

quartets in the input trees in case such a split system exists. This is related to

the question as to what extent SuperQ reconstructs the dominant splits by the

input trees. To shed more light on this, and to assess the performance of SuperQ

as compared with previous super tree/super network methods, we performed a

simulation following the approach presented in Holland et al. [47] (cf. also [52]

for a similar approach).

More specifically, we first generated a random phylogenetic tree T according to

the Yule-Harding model [44, 90] with n leaves, also called the underlying tree.

Since previous methods such as Q-imputation do not take edge length informa-

tion into account, we assigned each edge in that tree length 1. Then we generated

a collection T of t partial trees by randomly selecting and removing k leaves from

T , for some fixed k, repeating this t times in total (if necessary we repeated this

process to ensure that every leaf of T was contained in at least one of the partial

trees in T). Similarly, to understand the impact of conflict in the input trees, we

generated a collection T of t partial trees by randomly applying k′ SPR moves

to T , for some fixed k′, again repeating this t times in total. We took n = 16, 32,

k, k′ = 1, 2, 3, 4, 5, 6, and t = 2, 4, 8, 16, 32.

We then measured the deviation of the output split system Σ to the split system

corresponding to the underlying tree T , by measuring the number of Type I and

Type II splits which are given as follows. A Type I split is a split in Σ that

does not arise from T , while a Type II split arises from T but is not contained

in Σ. We generated 100 collections T for each combination of n, k/k′ and t; the
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number of Type I and Type II splits presented is an average for each of these

collections. Note that we count the number of Type I/Type II splits for the pur-

pose of comparison with methods such as Q-imputation as these do not generally

assign weights to the splits in the output.

The simulation study in Holland et al. [47] included Q-imputation, Z-closure and

the widely used super tree method matrix representation with parsimony (MRP)

[7, 73]. It was found in Holland et al. [47] that for all three methods the number of

Type I splits grows with the number of missing taxa for a fixed number of partial

trees in T. The rate of growth found was similar for Q-imputation and MRP

and, for these methods, the number of Type I splits decreased with increasing

number of trees in T. This is illustrated in Figure 3.1a for Q-imputation and,

as can be seen, SuperQ exhibits a similar behaviour (Fig. 3.1b). In contrast, it

was found in Holland et al. [47] that for Z-closure the number of Type I splits

increased with an increasing number of trees in T.

For Type II splits the picture is more clear-cut: it was found in Holland et al. [47]

that for all methods the number of Type II splits increases, for a fixed number

of partial trees in T, with the number of missing taxa, and it decreases with an

increasing number of trees in T. In Figure 3.1c and d, we present the simulation

results for Type II splits for Q-imputation and SuperQ which illustrates that Su-

perQ shares this behaviour, a fact that was also confirmed in the simulations for

n = 32 (plots included in the Appendix A material).

The simulations for different numbers of SPR moves in Holland et al. [47] suggest

that again it is the behaviour with respect to Type I splits that is more variable

for the different methods. In particular, it was found in Holland et al. [47] that

(i) for MRP the number of Type I splits increases, for a fixed number of trees

in T, with the number of SPR moves, and it decreases with the number of trees

in T, (ii) for Q-imputation the number of Type I splits, for a fixed number of

trees in T, levels off or even decreases slightly with the number of SPR moves

and it increases with the number of trees in T, and (iii) for Z-closure the number

of Type I splits increases both with the number of SPR moves and with the
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Figure 3.1: Type I splits for a) Q-imputation and b) SuperQ, Type II splits for
c) Q-imputation d) and SuperQ (gene trees with missing taxa generated from a
random tree with 16 taxa).

number of trees in T. Our simulations for SuperQ (plots included in Figure 1 in

the Appendix A material) indicate that it has a behaviour that is quite similar

to that of Q-imputation in that the number of Type I splits levels off with an

increasing number of SPR moves. However, in contrast, the number of these

splits increases for SuperQ much less dramatically than for Q-imputation with

the number of trees in T.

3.4.2 Biological data sets

To illustrate the applicability of SuperQ we present its application to three data

sets. These were chosen as they have a range of sizes and properties, and have
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also, in part, been used to test previous super network methods.

The first data set that we consider was recently presented in Tepe et al. [86] and

consists of 10 gene trees (available on TreeBASE) relating 15 species from the

genus Solanum. For some of these species multiple accessions were included in

the study resulting in a set of 24 taxa. In Figure 3.2 we present the super net-

works constructed using Q-imputation, Z-closure and SuperQ. The colored taxa

are from section Herpystichum of Solanum. They are divided into the group of

ground-trailing vines (purple) and climbing vines (green). The taxa in black rep-

resent other sections of Solanum.

As can be seen, all three methods confirm the finding in Tepe et al. [86] that there

exists a major split that separates the climbing taxa of section Herpystichum from

the ground-trailing taxa of the same section and the taxa representing other sec-

tions of Solanum. The degree of conflict in the input trees referred to in Tepe et al.

[86] is reflected by the non-treelikeness of the Z-closure and the SuperQ networks.

The Q-imputation network is a tree and only for a threshold of 0.16 or less non-

treelike parts start to appear in the consensus network. According to Tepe et al.

[86] most of the conflict in the trees is related to grouping the ground-trailing taxa

of section Herpystichum. This is represented more clearly in the SuperQ network

than in the other networks. In all three networks there is no clear split that sep-

arates the taxa of Section Herpystichum from the other taxa. In Tepe et al. [86]

some methods gave strong support for such a split while others gave only weak

support. In particular the relationship between section Pteroidea (represented by

the two S. anceps taxa) and section Herpystichum cannot be completely resolved.

An attractive feature of the super network analysis for this example is that it

gives a visual impression of the different possible groupings discussed in Tepe

et al. [86] at a single glance. For example, the existence of some support for a

split that groups S. lycopersicum and S. bulbocastanum together with the two S.

trifolium taxa. Also note in the Z-closure network the relationship between the

non-colored taxa is represented so that edges of the network cross each other. In

contrast, the SuperQ network is always guaranteed to be without any crossing
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a)

b)

c)

Figure 3.2: Super networks for the Solanum data set. a) Q-imputation consen-
sus network (threshold 0.33). b) Z-closure network (filtered super network with
standard options except MinNumberTrees set to 3). c) SuperQ network.
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Figure 3.3: Seven partial gene trees showing 50 species of Brassicaceae.

edges which can help improve the readability of more complex networks.

The second data set consists of 7 maximum likelihood trees estimated from in-

dependent genome loci of flowering plants from the family Brassicaceae. The

gene trees, which are depicted in Figure 3.3, were reconstructed using nuclear

and chloroplast nucleotide sequences obtained from GenBank, and others deter-

mined as part of a study on phylogenetic relationships among close relatives of

Arabidopsis (McBreen et al., unpublished). The total number of taxa is 50. Note

that in the trees shown in Figure 3.3 all pendent edges have the same weight. As

noted above, these weights do not influence the quartet-weight function κ∗ and

we only included these edges to make the trees easier to read.
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In contrast to the previous data set, the matrix M in objective function (3.3)

does not have full rank and so this example illustrates the impact of the choice

of the objective function g′. The network constructed by SuperQ using objective

function (3.4) is depicted in Figure 3.4a. This network contains a split S that

separates all species of the genus Pachycladon (abbreviated by P) from the other

taxa. Note that, as this split is not balanced, it is lost from the output if we do

not take into account the bias towards balanced splits (see Fig. 3.4b). In partic-

ular, instead of S, we obtain splits that separate some or all of the Pachycladon

species together with other species, such as Rorippa amphibia and Barbarea vul-

garis, from the remaining taxa. One of the reasons for this is that the input

trees do not give much information on the grouping of the Pachycladon species

relative to some other species. For example, none of the input trees contains a

Pachycladon species as well as Rorippa amphibia or Barbarea vulgaris.

The third data set consists of five gene trees for fungal species which was published

in Pryor and Bigelow [71], Pryor and Gilbertson [72] and used as an example for

Z-closure in Huson et al. [52]. The total number of taxa is 63. The network

obtained by SuperQ for the funghi data set is depicted in Figure 3.5. Here again

the matrix M did not have full rank. When we compare this super network with

the output of Z-closure presented in Huson et al. [52, p. 156] we find that both

networks agree on many of the major splits. The Z-closure network, however,

contains many crossing edges in the central part of the network. The SuperQ

network is planar and, therefore, the conflicts depicted might be somewhat easier

to grasp. Moreover, SuperQ tends to resolve parts of the Z-closure network such

as, for example, the grouping of the Alternaria taxa marked red in Figure 3.5. We

suspect that this is due to the fact that SuperQ takes into account edge lengths

in the input trees whereas Z-closure does not, leading, potentially, to a loss of

information.
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a)

b)

Figure 3.4: The super network constructed by SuperQ for the Arabidopsis data
set using a) the objective function (3.4), and b) a linear objective function that
does not take into account the bias towards balanced splits. Edges marked in red
in a) correspond to the split separating the Pachycladon species from the other
taxa, which does not appear in network b).
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Figure 3.5: The super network constructed by SuperQ for the five partial gene
trees from Pryor and Bigelow [71], Pryor and Gilbertson [72] showing 63 species
of funghi.

3.5 Discussion

In this chapter we have presented SuperQ, a new method to construct super net-

works from partial trees. The simulation and illustrative examples indicate that

the method could be useful in practice. In particular, SuperQ tends to generate

results that are in some agreement with Z-closure and Q-imputation, but with

the advantage that a circular split network is always produced.

There are some important differences between SuperQ and Z-closure/Q-imputation

that are worth highlighting. For example, in contrast to Z-closure, SuperQ does

not depend on the order in which the input data is processed (the output of Z-

closure can potentially depend on the order in which splits from the input trees

are processed). We should note, however, that for SuperQ ties might occur in

the score function used in the QNet algorithm, although such ties will probably

occur rarely in practice for real-valued quartet weights. In addition, in contrast

to Q-imputation, the input to SuperQ is not restricted to partial trees but, as

with Z-closure, SuperQ could clearly be applied more generally to any collection

of partial split networks. This could be a useful feature as the rules used in
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Z-closure were designed under the assumption input data does not contain too

much conflict.

Concerning the SuperQ algorithm, while the objective function (3.4) used in the

optional second optimisation step seems to work well in practice, there are other

variants that might be worth considering. For example, minimising the squared

Euclidean length of the resulting weighting vector seems very natural and, in ad-

dition, it has the (at least theoretically) appealing property that it always yields

a unique optimal solution. In practice, however, we found that the resulting split

system tended to contain many splits with small positive weight which led to

uninformative networks. Another natural choice, yielding only a lower bound on

the weights that should be assigned to the splits in Σ, minimises, for each split

S in Σ, the weight µ(S) that is assigned over all µ with M · µ = 0 and µ0 + µ

non-negative. This amounts to solving a family of k linear programs, adding an

increasing computational burden compared to minimising (3.4). Even so, it could

potentially allow a more detailed investigation of individual splits that are not

assigned a unique weight in all optimal solutions of (3.2).

For the simulations and data sets presented above we found that the compu-

tational time needed to process a data set with the current implementation of

SuperQ was similar to that of Z-closure and Q-imputation. More generally, we

found that the average run time for SuperQ applied to randomly generated input

collections with 10 trees involving 50 taxa was just over 2 minutes, whilst for

100 taxa the average run time increased to 54 minutes (see Table 1 in Appendix

A for more data). We also found that for the biological data sets the run time

was slightly less than expected from these experiments: It took approximately

22 seconds and 63 seconds to construct the networks for the Arabidopsis and

funghi data sets, respectively. This could be because these data sets have less

conflict than randomly generated ones. Even so, the main drawback of SuperQ,

in common with most quartet-based methods (such as for example QNet), is the

high memory consumption arising from storing and handling the collection of

quartets derived from the input trees, which grows asymptotically with n4 for n

taxa. Reducing the memory consumption involved in our approach could be an
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interesting direction for future research.

In conclusion there are various methods available for computing phylogenetic su-

per networks. There is great deal of scope for further developing such methods,

especially for rooted phylogenetic trees (cf. for example [53, Chapter 11]), and

using them it should be possible to gain a greater understanding of the complex-

ities hidden within collections of partial trees. As the number of fully sequenced

genomes continues to grow and, correspondingly, the need for analyzing collec-

tions of trees, these tools should continue to become increasingly important.

3.6 Concluding remarks

In this chapter we presented SuperQ, a new method to construct super networks

from partial trees and compared it to two other leading super network methods.

SuperQ is a novel approach for incorporating the edge weights of the input trees

in the construction of a circular split system, which can be represented as a

circular split network. It offers a scaling method for the input trees and the input

is not restricted to phylogenetic trees but could also be split networks. In the

next chapter we look at approaches of constructing circular split networks from

distances rather than quartets and trees.
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Chapter 4

Construction of circular split

systems from distances

4.1 Summary

In this chapter, we review some ways to construct circular split systems from dis-

tances. This will be useful for the next chapter, where we will describe a method

to search for trees in such split systems. The NeighborNet algorithm, introduced

by D. Bryant and V. Moulton [14], is a popular tool for constructing a weighted

circular split system that can be represented by a circular split network. In [60] D.

Levy and L. Pachter propose a framework for constructing circular split systems

based on NeighborNet, and pointed out that, depending on the adjustment of

this framework, it can be used to produce circular split systems with interesting

properties. For example, constructing a circular split system in a certain way

guaranties that it contains a compatible split system corresponding to the Neigh-

borJoining tree. As well as reviewing both of these approaches we use Levy and

Pachter’s framework to describe a new way to construct a circular split system

by greedily optimising the minimum evolution criterion.

All of these methods operate on distance data and output a circular ordering,

which gives rise to a full circular split system. Weights for the splits can then

be subsequently calculated in another step using the method of ordinary least
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squares (often used with non-negative constraints), which we shall also review. A

by-product of all circular ordering constructions is thus a circular split network. In

order to use these methods in the investigations carried out in the next chapter

we have also implemented them in Java. We shall illustrate the circular split

networks resulting from the various methods for a biological dataset consisting of

Salmonella sequences.

4.2 Original NeighborNet

The NeigborNet algorithm [14] constructs a collection of weighted circular splits

from a distance matrix. This collection of weighted circular splits can be rep-

resented by a circular split network. NeighborNet is widely used to provide a

snapshot of the input data and is closely related to the NeighborJoining algo-

rithm [77] that we briefly described in Section 2.3.1.2.

The construction of the collection of weighted circular splits can be broken up into

two main steps: the derivation of a circular ordering of the taxa that determines

a full circular split system and the calculation of the weights of the splits. Note

that for displaying splits with a positive weight in a split network the network

construction algorithm in [53] can be used.

4.2.1 Construction of the circular ordering

The input for the NeighborNet algorithm is a distance matrix D on a set of

taxa X with |X| = n. A graph G = (V,E) where V (G) = X and E(G) = ∅
is initialised. Recall that a connected component of G is a maximal connected

subgraph of G, therefore initially we have n connected components, all isolated

vertices, in G. A distance DC between connected components in G is also com-

puted which depends on the distance DV between vertices in V (G) (see below

for details). Initially, both distances DV = DC = D. An example for this initial

state is given in Figure 4.1 1.

We now give an overview of the algorithm (see Figure 4.1). NeighborNet itera-
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tively updates the graphG by selecting two connected components and connecting

them by inserting an edge between one vertex of one selected component and one

vertex of the other selected component. The vertices that are considered to be

connected by the inserted edge must be either isolated vertices or end vertices

of a path, so they have either degree 0 or 1 before the connection. Since the

connected components in G change as the algorithm progresses the distance DC

is also updated. In this manner connected components of G, consisting of paths

that connect vertices in G, are built. The graph G is updated again if a path

reaches a length of at least two edges. In this case the three connected vertices are

replaced by two new vertices that are connected by an edge. Since the vertex set

of G changes it is then also necessary to update DV . All these steps are repeated

until G consists of one connected component. This path gives rise to a circular

ordering of the elements of X by back-substituting the vertices that have been

replaced before. We will now clarify this agglomerative process by detailing the

steps of NeighborNet. Note that we also provide the pseudo code in the Appendix

B.

First selection step

At any stage in the algorithm, let G consist of components C1, C2, . . . , Cm. In

order to update G two components Cr∗ and Cs∗ of G are chosen, that minimise

the Q-criterion,

Q(Cr, Cs) =(m− 2)DC(Cr, Cs)−
∑

t=1...m,t 6=r
DC(Cr, Ct)

−
∑

t=1...m,t 6=s
DC(Cs, Ct)

(4.1)

where

DC(Cr, Cs) =
1

|Cr||Cs|
∑
x∈Cr

∑
y∈Cs

DV (x, y).

In the first selection step there are three different scenarios of which connected

components can be selected (see Figure 4.2):

� two isolated vertices, are selected (see Figure 4.2a),
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� an isolated vertex and two connected vertices are selected (see Figure 4.2b),

or

� two connected components of G consisting of two connected vertices are

selected (see Figure 4.2c).

Note that this first step is equivalent to the selection step in the NeighborJoining

algorithm. If we keep track of the selected components, we can reconstruct a tree

in the same way as in the NeighborJoining algorithm. Initially there is a star tree

T with its leaves labelled with the taxa in X. In each iteration T is updated.

Choosing two components can be seen as making a cherry in T using the selected

components. This process is illustrated in parallel to building a circular ordering

in Figure 4.1.

Second selection step

Let Cr∗ and Cs∗ be the components of G chosen to optimise the Q-criterion in the

first selection step. As illustrated in Figure 4.2 there are several possibilities for

how to connect the vertices in the selected components. One of these possibilities

is selected in a second selection step. More specifically, the vertices xi∗ ∈ Cr∗ and

xj∗ ∈ Cs∗ are chosen to be connected by an edge if they minimise the score

Q̂(xi, xj) =(m̂− 2)DV (xi, xj)−
∑

t6=r∗,s∗
DC(xi, Ct)−

∑
t6=r∗,s∗

DC(xj, Ct)

−
∑
k 6=i

DV (xi, xk)−
∑
k 6=j

DV (xj, xk)

(4.2)

where m̂ = m + |Cr∗| + |Cs∗| − 2, because here the vertices in the connected

components are treated as individual vertices.

Reduction

The insertion of an edge between the vertices chosen in the second selection step

can result in one of three possible scenarios:

� The resulting path consists of one edge and therefore no reduction is per-

formed.
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� The resulting path consists of two edges and therefore one reduction must

be performed. In particular, the three connected vertices are replaced by

two connected vertices. An example of this reduction process is shown

in Figure 4.3. Note that this process makes it necessary to calculate the

distances between the two new vertices and all other vertices in G, that is

update DV and DC .

� The resulting path consists of three edges and therefore two reductions must

be performed. First, two adjacent edges are replaced by one edge and then

the remaining two edges are reduced again to one edge. An example of this

reduction process is shown in Figure 4.4. Note that this process makes it

necessary to update the distances DV and DC twice.

Updating the distances

Since in the reduction step three vertices are replaced by two, the distances from

these two new vertices to all other vertices in G need to be updated. Let x, y, z be

three vertices in G connected by xy and yz, that are replaced by the two vertices

u, v and that a is any other vertex in G. Then the distances from u to a and v

to a as well as from u to v are calculated using the following formulae:

DV (u, a) = (α + β)DV (x, a) + γDV (y, a),

DV (v, a) = αDV (y, a) + (β + γ)DV (z, a),

DV (u, v) = αDV (x, y) + βDV (x, z) + γDV (y, z),

where α, β, γ are non-negative real numbers and α+β+γ = 1. NeighborNet uses

α = β = γ = 1
3

by default.

By keeping track of the insertion of edges into G and the reductions, a circular

ordering π can be constructed once G consists of one connected component. In

each step two vertices are connected and therefore a path through the vertices is

constructed and this path gives rise to π (see Figure 4.1 7).
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4.2.2 Calculation of the split weights

The constructed circular ordering π of the elements of X gives rise to a full

circular split system Σ(π) which consists of all possible splits {S1, . . . , Sk} induced

by π. NeighborNet uses the least squares framework, as mentioned in Chapter

2, to compute weights for these splits. The input distance matrix D on X has

m = n(n−1)
2

unique entries and is represented as the m-dimensional vector

D =


D1,2

D1,3

...

D(n−1),n


where Di,j corresponds to the distance between xi and xj. Let A be the matrix

with m rows representing pairs of taxa and k columns representing all splits in

Σ(π), given by

A{i,j},t =

1 if xi and xj are on different sides of St

0 else.

In order to compute split weights we solve the equation D = Ab which represents

a system of linear equations. The vector b gives the split weights. We want

to choose each split weight such that the sum of the weights of all splits where

xi, xj are on different sides of the split is equal to the distance between these two

elements of X in D. Since a full split system is considered, the matrix A has full

rank [3] and therefore the system of linear equations has a solution. In particular,

a simple rearrangement of the equation yields the formula

b = (ATA)−1ATD.

Note that this formula can result in negative weights for splits, which is not

suitable for the representation as a network. Therefore the ordinary least squares

estimation with a non-negative constraint is used, which means that entries of

b are constrained to be non-negative. This can be solved using an algorithm by
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Lawson and Hanson [58]. This non-negative least squares version has no closed

formula and leads to an increases of run time.
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tuted by x6, x5, x7, x8, which gives
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dered set we can now substitute
x7, x8 by x1, x2, x3 which gives us
the final circular ordering π =
(x4, x6, x5, x1, x2, x3).

Figure 4.1: An example for the NeighborNet algorithm on X =
{x1, x2, x3, x4, x5, x6}.
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Figure 4.2: The possibilities to connect two connected components in one Neigh-
borNet iteration: a) no component contains an edge, b) one component contains
an edge, c) both components contain an edge. Here the dashed lines stand for
candidate edges to be added.
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Figure 4.3: a) Before the reduction: a connected component of G consisting of
three vertices x, y, z, a is another vertex of G outside the connected component.
b) After the reduction the connected component in a) is replaced by a connected
component consisting of two vertices w, v. The dashed lines represent the dis-
tances between the vertices in the component and a.
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Figure 4.4: a) Before the first reduction: a connected component consisting of
four vertices w, x, y, z and b) after the first reduction the connected component
in a) is replaced by a connected component consisting of three vertices u, v, z. c)
A second reduction results in a connected component with two vertices s, t. The
dashed lines represent the distances between the vertices in the component and
another vertex a outside the component.
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4.3 Variants of NeighborNet

In [60] D. Levy and L. Pachter suggest a framework, which includes variants

of NeighborNet, that can produce alternative circular split systems to the once

produced by the original NeighborNet. In this section we describe two of their

suggested variants of NeighborNet and introduce a new variant that is a greedy

heuristic for finding a circular split system of minimal length (corresponding to

the minimum evolution criterion).

Levy and Pachter’s framework is very similar to the original NeighborNet. The

input for the algorithm is a distance matrix D on a set of taxa X with |X| = n.

It also operates on a graph G consisting of connected components C1, . . . , Cm,

starting with m = n components each consisting of an element in X. As well

as in the original NeighborNet, each Ci will consists of one or more vertices that

are connected by a path. In the first and second selection step, two components

Cr∗ and Cs∗ are selected and then it is decided which ends of the selected compo-

nents to join. Instead of the reduction process, the two selected components are

then connected through an edge which is inserted between two selected vertices

(see Figure 4.5 for an example). Note that for this connection only vertices with

degree zero or one can be considered, since they are either isolated vertices or

the end vertices of a connected component. We denote the subset of vertices of

a component Ci in G with degree less than 2 by Ĉi. In the second selection step

two vertices xi∗ ∈ Ĉr∗ and xj∗ ∈ Ĉs∗ are chosen that minimise Equation 4.2. By

iteratively connecting the vertices of G, paths are built up, until a path through

all vertices of G is created, which gives the circular ordering of the elements of

X.

Since there is no reduction performed the vertex set of G is X in every step and

the distances between vertices are not updated. However the distances between

the components, DC , are updated. To do this a weighting, which determines

the way to update of distances is introduced. In the next section we explain

the updating process and weightings in more detail. For clarity we also provide

pseudo code in the Appendix B. As for the original NeighborNet the output of
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C1

C2

C3

C4

Figure 4.5: Let C2 and C4 be the selected components, then the second selection
step decides which of the end vertices of each component are connected by an
edge. The dashed lines indicate all 4 possible edges.

the algorithm is a circular ordering and a compatible split system. The weights

for the splits in the circular ordering are calculated as described in Section 4.2.2.

4.3.1 Weightings

Definition 4.3.1. (Weighting) Let C be the set of connected components in G

with |C| = m. A weighting for C is a function µ : X → R such that µ(xi) ≥ 0

for all xi ∈ X and, for each r = 1, . . . ,m,
∑

xi∈Cr
µ(xi) = 1 and µ(xi) > 0 for all

xi ∈ Ĉr.

The distances in DC are updated using the following formulae

DC(Cr, Cs) =
∑

xi∈Cr,xj∈Cs

µ(xi)µ(xj)D(xi, xj)

and

DC(x,Cr) =
∑
xi∈Cr

µ(xi)D(x, xi).

Note that in the initial state where |C| = |X|, µ(xi) = 1 for all xi since every

component of C consists of a single vertex. The weighting µ can be chosen in

different ways; we present two that are of interest. Note that these two weightings

lead to variants of NeighborNet that are distinctively different to the original

NeighborNet.
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Travelling salesman problem (TSP) weighting

Given a set of vertices (which represents a set of cities), and the distance between

them the travelling salesman problem is to find the shortest circular tour (that is

a circular ordering) through the vertices. In the NeighborNet algorithm we also

calculate a circular tour through the elements of X. Here we describe a weighting

that leads to a greedy heuristic for the travelling salesman tour through the

vertices xi ∈ X, because in every step an edge is inserted between vertices such

that it leads to the shortest path between the vertices in Ĉr and Ĉs. Therefore

this weighting is called TSP (Travelling Salesmen Problem) weighting.

Definition 4.3.2. (TSP weighting) A weighting µ : X → R is a TSP weighting

if µ(xi) = 0 for all xi ∈ Cr\Ĉr for each r.

Definition 4.3.3. (balanced TSP weighting) A balanced TSP weighting is a TSP

weighting where

µ(xi) =

1
2

if xi ∈ Ĉr, |Ĉr| = 2

1 if xi ∈ Ĉr, |Ĉr| = 1.

This weighting gives all vertices in Ĉr (one or two vertices) the same influence in

the distance update.

Tree weighting

As for the original NeighborNet algorithm the first selection step in Levy and

Pachter’s framework yields a tree as described in Section 4.2. Another weighting

that is introduced in [60] is called tree weighting, because it influences what kind

of tree is produced in the algorithm.

Definition 4.3.4. (Tree weighting) Let µ be a weighting for C in the kth iteration

and consider a new weighting µ′ for the (k + 1)th iteration of the variant of

NeighborNet. Then µ′ is a tree weighting if it satisfies

µ′ =

αµ(xi) if xi ∈ Cr∗,
(1− α)µ(xi) if xi ∈ Cs∗,
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where Cr∗ and Cs∗ are the two components being merged.

The important observation made in [60] is that if α = 0.5 then the tree that

is produced through the components selection in the first selection step is the

NeighborJoining tree. Therefore, for this weighting the circular split system will

be guaranteed to contain the splits of this tree.

4.3.2 Greedy minimum evolution variant of NeighborNet

In the next chapter we will approach the problem of approximating minimum

evolution trees by restricting the search space to trees that can be found in a

circular split system. An interesting question that arises from this idea is how to

construct a circular split system so that it captures relevant information for find-

ing a good approximation of a minimum evolution tree. In [60] hybrid weightings

are described. For example, we could use a tree weighting in the first selection

step and a balanced TSP weighting in the second.

We now describe an approach called GreedyME along these lines that in the first

selection step greedily optimises a tree according to the minimum evolution cri-

terion, and in the second selection step it uses the balanced TSP weighting to

compute a shortest ordering that is respected by this tree.

The input to GreedyME is a distance matrix D on X. The graph G = (V,E) is

initialised by setting V = X and E = ∅. As before, C is the set of connected com-

ponents in G and the distance matrix DC is initialised by putting DC = D. Note

that initially C consists of |X| = n components, where each is an isolated vertex

labelled with an element of X. Additionally a split system Σ(T ) that represents a

star tree T is initialised. The idea is to choose two components Cr∗, Cs∗ that form

a cherry in T such that the total length of the resulting tree is minimised using

weights calculated by the method of ordinary least squares. We implemented this

idea using an algorithm by D. Bryant to calculate the edge lengths in the tree [11].

The following steps are repeated until |C| = 1. In the first selection step two

components Cr∗, Cs∗ are selected that minimise
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CalculateEdges(Σ(T ′), D)

where Σ(T ′) = Σ(T ) ∪ ((Cr ∪ Cs)|X − (Cr ∪ Cs)) for all Cr, Cs ∈ C and r 6= s.

The split system induced by the tree with minimal length is denoted by Σ(T ∗).

The algorithm CalculateEdges can be found in Chapter 5, page 139 of [11].

In the second selecting step two vertices xi∗ and xj∗ are selected that minimise

the same criterion (Equation (4.2)) as for the original NeighborNet and its vari-

ants. The edge xi∗xj∗ is added to G and the components set C updated. The

split system Σ(T ) := Σ(T ∗) and the distances are also updated according to the

weighting µ that is used in the second selection step. We used the TSP weighting.

The output of GreedyME is a circular ordering π for X and a compatible split

system Σ(T ∗) ⊆ Σ(π). The split weights are then calculated with the method

explained in Section 4.2.2.

4.4 Networks from a Salmonella dataset

To illustrate the variants of NeighborNet that we have described above, we shall

present their output for the Salmonella dataset that was used in [14], where

the original NeighborNet algorithm was introduced. The dataset consists of 33

MLSTmanB (multilocus sequencing typing) sequences. There it illustrated how

NeighborNet could be used for investigations to reconstruct the phylogenetic re-

lationship between the different organisms in this dataset.

In Figure 4.6 we see the network constructed by NeighborNet. It contains several

boxes, which indicate conflicts in the data. This is probably caused by recombi-

nation [14]. The networks constructed using balanced TSP and Tree weightings

are presented in Figure 4.7 and Figure 4.8 respectively. These networks appear

to contain fewer boxes and therefore more treelike. In Figure 4.9 the network

constructed by GreedyME is depicted. It shows more similarity to the network

constructed by the original NeighborNet, indicating more conflicts by several

boxes in the network than the TSP and Tree variants. In particular, this exam-
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Figure 4.6: The circular split network constructed for 33 manB sequences of the
Salmonella dataset using the original NeighborNet algorithm.

ple illustrates that the choice of ordering can be quite critical for the the network

that is produced.
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Figure 4.7: The circular split network constructed for 33 manB sequences of the
Salmonella dataset using the balanced TSP weighting.
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Figure 4.8: The circular split network constructed for 33 manB sequences of the
Salmonella dataset using tree weighting.
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Figure 4.9: The circular split network constructed for 33 manB sequences of
the Salmonella dataset using the GreedyME version of NeighborNet and TSP
weighting.
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4.5 Concluding remarks

We have reviewed the NeighborNet algorithm and three different variants of it

(one of which we developed), and showed that they can produce quite different

results on a biological data set. All of these methods construct a circular ordering,

which gives rise to a full split system from a distance matrix. In the next chapter

we explain an algorithm that uses full circular split systems produced by the

described methods in order to search for trees.
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Chapter 5

NetME: Fishing for minimum

evolution trees with

NeighborNets

This is an adaption of: S. Bastkowski, A. Spillner, V. Moulton. Fishing for

Minimum Evolution Trees with NeighborNets. Information Processing Letters,

2013.

5.1 Summary

A common approach taken to construct a phylogenetic tree is to search through

the space of all possible phylogenetic trees on the set of species so as to find

one that optimizes some score function, such as the minimum evolution criterion.

However, this is hampered by the fact that the space of phylogenetic trees is ex-

tremely large in general. An alternative approach, which has received somewhat

less attention in the literature, is to search for trees within some set of splits of

the set of species in question.

In this chapter we consider the problem of searching through a set of splits that

is circular. More specifically we present NetME, an O(n4) algorithm for finding

an optimal minimum evolution tree in a circular set of splits on a species set
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of size n. In the last chapter we introduced methods such as the NeighborNet

algorithm to construct circular split systems. Using simulations and a biological

dataset, we compare the performance of our algorithm when applied to the output

of these methods with that of FastME [21], a leading method for searching for

minimum evolution trees in tree space. We find that, even though a circular set

of splits represents just a tiny fraction of the total number of possible splits of

a set, the trees obtained from circular sets can compare quite favourably with

those obtained with FastME, suggesting that the approach could warrant further

investigation.

5.2 Background

As mentioned in Chapter 2, a common approach to construct phylogenetic trees

is to search through the space of phylogenetic trees, trying to find a tree (or trees)

that optimize some score such as the minimum evolution criterion [76]. However,

this is hampered by the fact that the space of phylogenetic trees on X grows

exponentially in n = |X| and, indeed, it has been shown that finding an optimal

tree is NP-hard for many of the popular optimization criteria (see for example

[17, 18]).

Interestingly, there is an alternative approach to searching through tree space,

which was studied quite early on in the development of phylogenetics (see for

example [20, 70]), and more recently in [10], but that has received somewhat less

attention in the literature. In particular, instead of searching through the set of

all possible trees on the set X, we look for trees within a collection of splits of X.

The rationale behind this approach is that any phylogenetic tree induces a set of

splits of X in which every split corresponds to an edge of the tree, and that this

set of splits uniquely determines the tree (cf. [79]).

Intriguingly, in [11] a dynamic programming framework is developed to search

for trees in a given collection of splits of X. Although still requiring exponential

time in general, this approach has the advantage that it can yield polynomial

time algorithms when restricted to split systems having size that is polynomial
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in n = |X|. It is therefore of interest to develop efficient algorithms to search for

trees in special classes of split systems, as well as ways to generate split systems

which capture salient information.

In this vein, here we develop an algorithm for searching for a tree that optimizes

the minimum evolution criterion by searching in a circular split system. A pre-

liminary version of this algorithm was presented in [5]. In particular, we show

that for a circular split system there is an O(n4) time algorithm for computing

an optimal minimum evolution tree, which improves on the run time of O(n7)

for the more general minimum evolution algorithm presented by D. Bryant in

[11, Section 5.5]. We also present some simulations which indicate that minimum

evolution trees in circular split systems generated by NeighborNet can compare

favourably with those obtained by searching through the whole of tree space.

Before continuing, we note that the problem of searching for trees in split sys-

tems is related to the problem of finding trees in phylogenetic networks (cf. [87]

and [56] for some recent results on finding trees in networks). However, this is

a different problem in general since, for example, the minimum evolution tree in

a circular split system generated by NeighborNet is not necessarily a subtree of

the associated network.

We recall some relevant background material on the minimum evolution problem

(cf. also [79]). As described in Chapter 2 given a distance matrix D on X, and

a phylogenetic tree T = (V,E) on X, the edge lengths ωD(e), e ∈ E, can be

computed using the method of ordinary least squares. Recall that the minimum

evolution score σD(T ) is defined to be the total length of T and that the minimum

evolution problem is to find a phylogenetic tree T on X with smallest score σD(T )

for a given distance matrix D. Note that, it is possible to compute σD(T ) for given

D and T in O(n2) time [11, p. 137] using the Formulae (2.2) and (2.3) presented

in Chapter 2. To the best of our knowledge, the computational complexity of

the minimum evolution problem is still open, although the complexity of many

related problems [17] suggests that it is NP-complete.
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5.3 Method

In this section, we recall Bryant’s dynamic programming algorithm for finding

minimum evolution trees within a split system and then describe our algorithm

in Section 5.3.2. We are interested in the problem of searching for trees in split

systems. More specifically, given a distance matrix D and a split system Σ on

X, the restricted minimum evolution problem requires us to find the minimum

σ(D,Σ) of σD(T ) over all binary phylogenetic trees T on X with Σ(T ) ⊆ Σ, where

Σ(T ) is the split system consisting of the splits associated to the edges of T .

Any phylogenetic tree T on X with Σ(T ) ⊆ Σ and σD(T ) = σ(D,Σ) is called a

restricted minimum evolution tree for D and Σ. Note that the original minimum

evolution problem corresponds to the restricted version with Σ = Σ(X) where

Σ(X) contains all possible splits for X.

5.3.1 Bryant’s algorithm

In [11] Bryant presented an algorithm for solving the restricted minimum evolu-

tion problem with run time O(n2k + nk3), where n = |X| and k = |Σ|. In this

section, we present a self-contained version of this algorithm, also describing it

in such a way that it can be easily adapted to our specific needs in the next section.

As above, let D denote the given distance matrix on X and Σ ⊆ Σ(X) denote

the given split system. For any split S = A|B of X and any x ∈ X, we denote

by S(x) that set, A or B, that contains x and by S(x) the other set. To be

able to apply and evaluate the Formulae (2.2) and (2.3) in Chapter 2 in con-

stant time in the course of the algorithm, we compute, as a preprocessing step,

for every split S = A|B ∈ Σ, the cardinalities |A| and |B| as well as the value

PS =
∑

x∈A,y∈BD(x, y). This preprocessing can clearly be done in O(n2k). More-

over, we store the splits in Σ in a suitable data structure D (for example in a

multidimensional dictionary [36]) that allows to check in O(n) time whether a

given split is contained in Σ.

Bryant’s algorithm uses a dynamic programming scheme to compute σ(D,Σ) [19,

ch. 15]. Each subproblem arising in this scheme corresponds to a particular
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triple (S = Se, S
′ = Se′ , S

′′ = Se′′) of splits that correspond to edges e, e′ and e′′

in the resulting phylogenetic tree as indicated in Figure 5.1a. To describe this

more precisely, we introduce some further notation. Fix an arbitrary element

x∗ ∈ X. We call an ordered triple (S, S ′, S ′′) of splits S, S ′, S ′′ ∈ Σ relevant if

S ′(x∗) ∪ S ′′(x∗) = S(x∗) and S ′(x∗) ∩ S ′′(x∗) = ∅ hold, and denote the set of

relevant triples of splits in Σ by rel(Σ). In addition, for any (S, S ′, S ′′) ∈ rel(Σ),

we let T (S, S ′, S ′′) denote the set of binary phylogenetic trees T on X with

{S, S ′, S ′′} ⊆ Σ(T ) ⊆ Σ and define

σD(S, S ′, S ′′) = min
T=(V,E)∈T (S,S′,S′′)

 ∑
e∈E,Se(x∗)(S(x∗)

ωD(e)

 . (5.1)

Note that, as indicated in Figure 5.1a, only the lengths of the edges in the bold

part of any tree T ∈ T (S, S ′, S ′′) are taken into account in the sum in For-

mula (5.1).

x∗e
e′

e′′

a)

xne
e′

e′′

xi

xk

xk+1

xj

b)

Figure 5.1: a) The overall structure of a phylogenetic tree T ∈ T (S, S ′, S ′′) for
some relevant triple (S = Se, S

′ = Se′ , S
′′ = Se′′) of splits. b) In case the split

system Σ is circular, we can use the special structure of Σ to pin down the relevant
triples: Se = Si,j, Se′ = Si,k and Se′′ = Sk+1,j for some 1 ≤ i ≤ k < j < n.

In view of the structure of the trees in T (S, S ′, S ′′) for any (S, S ′, S ′′) ∈ rel(Σ),
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it is not hard to derive the following recursive formula for σD(S, S ′, S ′′):

σD(S, S ′, S ′′) = α(S, S ′, S ′′) + β(S, S ′, S ′′) with

α(S, S ′, S ′′) =


ωD(S(x∗), S ′′(x∗)) if |S ′(x∗)| = 1

min
(S′,S1,S2)∈rel(Σ)

(σD(S ′, S1, S2)+

ωD(S1(x∗), S2(x∗), S ′′(x∗), S(x∗))
)

otherwise,

β(S, S ′, S ′′) =


ωD(S(x∗), S ′(x∗)) if |S ′′(x∗)| = 1

min
(S′′,S1,S2)∈rel(Σ)

(
σD(S ′′, S1, S2)+

ωD(S1(x∗), S2(x∗), S ′(x∗), S(x∗))
)

otherwise,

where, in case the minimum is taken over the empty set, we assume that the

value +∞ is obtained.

Note that the formulae for α(S, S ′, S ′′) and β(S, S ′, S ′′) only involve (i) values

ωD(·) which can be computed in constant time in view of the preprocessing men-

tioned above and (ii) values σD(S ′, ·, ·) and σD(S ′′, ·, ·) for which, by definition,

|S ′(x∗)| < |S(x∗)| and |S ′′(x∗)| < |S(x∗)| hold. Also note that the number of

relevant triples of the form (S ′, S1, S2) and (S ′′, S1, S2), respectively, is in O(k)

and that, given S ′ and S1 (or, similarly, S ′′ and S1), with the help of the data

structure D we can check in O(n) time whether there exists a suitable split S2 ∈ Σ

to form a relevant triple (S ′, S1, S2) (or (S ′′, S1, S2)). Hence, within the dynamic

programming scheme each value σD(S, S ′, S ′′) can be computed in O(nk) time.

Since there are O(k2) triples in rel(Σ), the overall run time is therefore in O(nk3).

To conclude the description of the algorithm, note that, for any (S, S ′, S ′′) ∈
rel(Σ) and any T ∈ T (S, S ′, S ′′), the sum in Formula (5.1) does never include

the length of the edge e∗ of T that is incident to x∗ and corresponds to the split

S∗ = Se∗ = {x∗}|X−{x∗}. Therefore, to obtain the minimum of the total length
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of the resulting tree, in the last step we compute

σ(D,Σ) = min
(S∗,S1,S2)∈rel(Σ)

(
σD(S∗, S1, S2) + ωD(S1(x∗), S2(x∗))

)
,

which can clearly be done in O(nk) time. So, the overall run time is indeed

O(nk3) and, by tracing back the computation of σ(D,Σ) through the dynamic

programming scheme, we can easily obtain a restricted minimum evolution tree

for D and Σ in case σ(D,Σ) 6= +∞. Otherwise there is no binary phylogenetic tree

T on X with Σ(T ) ⊆ Σ.

5.3.2 Computing minimum evolution trees in circular split

systems

We now focus on the restricted minimum evolution problem for a circular split

system. This is a special type of split system that can be generated, for example,

from a distance matrix D using the NeighborNet algorithm [14]. Recall that a

split system Σ ⊆ Σ(X) is circular [3] if there exists an ordering x1, x2, . . . , xn of

the elements in X such that, for every split A|B ∈ Σ, there exist 1 ≤ i < j ≤ n

with A = {xi+1, . . . , xj} or B = {xj+1, . . . , xi}. If such an ordering of X exists

it can be computed in O(nk), k = |Σ|, [24] and we say that Σ respects that

ordering. Note that the maximum possible number of splits in a circular split

system Σ on X is
(
n
2

)
[4]. Thus, Bryant’s algorithm runs in O(n7) on a circular

split system. We now show how this can be improved to O(n4).

Assume that Σ is a circular split system and let x1, x2, . . . , xn be an ordering of X

which Σ respects. We put x∗ = xn and, for any 1 ≤ i < j ≤ n, we define the split

Si,j = {xi+1, . . . , xj}|X − {xi+1, . . . , xj}. Note that Σ ⊆ {Si,j : 1 ≤ i < j ≤ n}
holds, that is, every split in Σ corresponds to a unique pair of indices i and j. As

an immediate consequence it follows that the preprocessing outlined above can

be done in O(n2) time (for computing the values PS see for example [68] for an

O(n2) time algorithm in a more general context).

The key observation, however, is that every relevant triple (S, S ′, S ′′) ∈ rel(Σ)
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must be such that S = Si,j and either S ′ = Si,k and S ′′ = Sk,j or S ′ = Sk,j

and S ′′ = Si,k for some 1 ≤ i ≤ k < j ≤ n (cf. Figure 5.1b). Hence, for

any splits S ′, S ′′ ∈ Σ, there are only O(n) triples (S ′, S1, S2) and (S ′′, S1, S2) in

rel(Σ). Moreover, for the data structure D we can simply use a two-dimensional

array in which we mark the presence/absence of the split Si,j in Σ for each pair

1 ≤ i < j ≤ n. Then we can easily check whether a split is contained in Σ in

constant time. As a consequence, within the dynamic programming scheme each

value σD(S, S ′, S ′′) can be computed much faster, namely in O(n) time. Together

with the fact that there are only O(n3) triples in rel(Σ), this implies that the

overall run time is O(n4).

5.4 Results

To give some idea of how well our approach fairs in practice, we implemented it

and generated some simulated data sets to compare its performance with FastME

[21], one of the leading methods to construct an approximation of an minimum

evolution tree. Note that FastME performs a local search in tree space using

a neighborhood based on certain types of tree edit operations. In FastME we

chose the NeighborJoining-tree option as the start topology for the local search

together with nearest neighbour interchange tree edit operations, and ordinary

least squares for searching the neighborhood of a tree.

5.4.1 Simulations

In our investigation we conducted two different experiments. In the first one we

generated 1000 treelike and 1000 random, non-treelike distance matrices D on a

set X with |X| = 25. To simulate treelike matrices, we followed the procedure

described in [45]. In particular, we evolved 25 molecular sequences of length 1000

along a tree (with probability r of recombination set to 0), and computed a

distance matrix from the resulting alignment using the so-called Kimura 2 pa-

rameter model. To simulate random distance matrices we created symmetric

matrices with zero’s on the diagonal and random values between 0 and 1 in the

remaining entries. To provide a visual impression of the structure of treelike
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versus a non-treelike distance matrices we picture typical examples of the phy-

logenetic networks produced by NeighborNet from these two types of distance

matrix (constructed using SplitsTree4 [50]) in Figure 5.2. As can be seen, the

visual appearance of the network on the left is quite similar to a tree whereas the

one on the right is not.

a) b)

Figure 5.2: Phylogenetic networks produced by NeighborNet representing a tree-
like (a) and non-treelike (b) distance matrix.

To generate circular split systems we tried various approaches. In particular,

for each distance matrix we used NeighborNet (NNet) as well as its traveling

salesman (TSP) and GreedyME (Greedy) variants, as described in Chapter 4,

to produce an ordering of the elements in X. For comparison purposes we also

generated random orderings of X. Once an ordering of X was obtained, we

computed a restricted minimum evolution tree for the circular split system con-

sisting of all possible splits that respect the ordering, as described in Section 5.3.2.

In Figure 5.4 we present the results of our experiments. The shown results indicate

that NeighborNet and its variants all seem to be capturing relevant splits for both

treelike and for non-treelike data, although NeighborNet tends to perform slightly

better. This is supported by the average minimum evolution scores of (i) the

trees generated using the NeighborNet ordering, (ii) the trees generated using the

random ordering, and (iii) the trees generated by FastME which were (i) 0.92537,

73



(ii) 1.23472 and (iii) 0.92535, respectively, for the treelike distance matrices and,

(i) 2.92332, (ii) 4.78671 and (iii) 2.93992 for the non-treelike matrices.

Treelike

Non-Treelike

NNet

Greedy

NNet

TSP

Random

Greedy

TSP

Random

Number of distance matrices
100 200 300 400 500 600 700 800 900 1000

Figure 5.3: The stacked bar chart shows the number of distance matrices (out of
1000) for which the minimum evolution score of the phylogenetic tree produced
by solving an instance of the restricted minimum evolution problem was equal
(light gray), smaller (dark gray) or larger (white) than the minimum evolution
score of the tree produced by FastME.

In our second experiment, we considered sets X with n = 25, 50, 100, 200, 400 and

800 taxa and generated 100 treelike as well as 100 random, non-treelike distance

matrices on each of them. We simulated the treelike and non-treelike datasets in

the same way as for the first experiment. To generate circular split systems we

used NeighborNet as well as its traveling salesman variant (TSP) [60] and again

we also generated random orderings of X for comparison purpose. As in the first

experiment we computed a restricted minimum evolution tree for the full circular

split system induced by the ordering.

In Figure 5.4 we present the results of our experiments using NeighborNet to

construct the ordering of X. As in the first experiment our results suggest that
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Figure 5.4: The stacked bar chart shows the number of distance matrices (out of
100) for which the minimum evolution score of the phylogenetic tree produced for
NeighborNet was equal (light gray), smaller (dark gray) or larger (white) than
the minimum evolution score of the tree produced by FastME.

NeighborNet seems to be capturing relevant splits for both treelike and for non-

treelike data. For the tree-like data, FastME appears to perform somewhat better

for larger numbers of taxa, but this trend is reversed for the non-treelike data. We

also found that random orderings and orderings produced by TSP tended to be

a lot worse than those produced by NeigborNet, especially for larger numbers of

taxa (not shown in Figure 5.4). The average minimum evolution scores of the trees

generated using NeighborNet, FastME, TSP and random orderings are shown in

Figure 5.1. Interestingly, for treelike data, the average scores of trees generated

using NeighborNet and FastME coincide on the first 4 digits. In contrast, for

non-treelike data, there is a noticeable difference in the average scores for these

two methods.

5.4.2 Biological data sets

In Chapter 4 we constructed circular split systems from a Salmonella dataset us-

ing different versions of NeighborNet. Here we use these circular split systems to
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Taxa NNet FastME TSP Random
Treelike

25 0.925 0.925 0.931 1.234

50 1.689 1.689 1.701 2.574

100 3.063 3.063 3.084 5.493

200 5.532 5.532 5.574 11.63

400 9.720 9.720 9.786 24.32

800 16.56 16.56 16.66 51.20
Non-Treelike

25 2.923 2.940 3.083 4.787

50 4.844 5.177 5.367 9.332

100 8.439 9.108 9.862 18.60

200 15.09 16.33 18.57 36.92

400 27.61 29.79 35.32 73.65

800 51.28 55.07 67.42 147.6

Table 5.1: The average minimum evolution scores of the trees obtained with
NeighborNet, FastME, TSP and random orderings for treelike and non-treelike
input data.

search for a minimum evolution tree and compare this tree to the tree produced

by FastME. The tree constructed by FastME has a total length of 0.136328 and

can be seen in Figure 5.5. In Figure 5.6 the minimum evolution tree found within

the full split system given by the original NeighborNet is depicted. The length

of this tree is 0.136661 and therefore slightly longer than the length of the tree

produced by FastME.

The tree in Figure 5.7 is the minimum evolution tree found within the split system

derived from the TSP variant of NeighborNet. It has a length of 0.138431. This

supports the impressions given by the results of our experiments on simulated

data. The split systems derived from the TSP variant of NeighborNet does not

seem to capture relevant splits as good as the original or the GreedyME version

of NeighborNet. In Figure 5.7 the grouping that differs from the NeighborNet

derived tree is highlighted. Sha 169 and Sha 182 are grouped together in the TSP

minimum evolution tree while in the NeighborNet minimum evolution tree these

two are grouped together with Ssc 40 and San 37.

76



The minimum evolution tree resulted from using the GreedyME version of Neigh-

borNet is the same as produced by FastME and they both agree with the original

NeighborNet minimum evolution tree in the grouping of Sha 169, Sha 182, Ssc

40 and San 37, but differ in a split that is highlighted in Figure 5.5.
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Sty15*

She7*
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UND8
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UND101
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Ssc40

Sha169
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Smb17
UND80

Snp39*

Sha130

Snp76
Smb27

Sty85
UND64

Sag129

Sha154, Sty62

She12

0.001

Figure 5.5: The minimum evolution tree found by NetME within a split system
constructed by the GreedyME variant of NeighborNet and by FastME.
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Figure 5.6: The minimum evolution tree found by NetME within a split system
constructed by NeighborNet.
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Figure 5.7: The minimum evolution tree found by NetME within a split system
constructed by the TSP variant of NeighborNet. The split grouping Sha169 and
Sha182 together is highlighted in red.
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5.5 Discussion

We conclude with a discussion of some possible future directions. We have pre-

sented an efficient algorithm for finding a restricted minimum evolution tree in a

circular split system which improves on the run time of a more general algorithm

presented in [11]. We have also seen that the restricted minimum evolution trees

obtained in split systems generated by NeighborNet compare favorably with the

ones produced by FastME. This is of some interest since the split systems gen-

erated by NeighborNet only represent a tiny fraction of the total number of all

possible splits (
(
n
2

)
vs. 2n−1 − 1 on a set of size n). In addition, our computa-

tional experiments indicate that NeighborNet produces an ordering that is better

at capturing splits relevant to building minimum evolution trees compared with

other methods (such as the TSP ordering). It could be of interest to see if there

may be other ways to generate even better orderings.

In phylogenetics there are criteria other than minimum evolution that are com-

monly used to construct phylogenetic trees. For example, the balanced minimum

evolution criterion (as described in Chapter 2) is also used for constructing trees

from distances (cf. [17]). It would be interesting to know whether or not a

restricted balanced minimum evolution tree can be efficiently constructed for a

circular split system, and whether a similar type of approach might work for other

criteria such as likelihood [18]. In this regards, it might be useful to also consider

searching in different types of split systems (such as weakly compatible split sys-

tems [4]), and also to consider different ways to generate such split systems.

Finally, note that we have only considered unrooted trees, and so it could be of

interest to develop restricted approaches for rooted trees. In this case it would be

appropriate to consider special classes of cluster systems rather than split systems

(cf. [10]).
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5.6 Concluding remarks

In this chapter we have discussed the idea of searching a full circular split system

for a minimum evolution tree as an alternative to an exhaustive search of the tree

space. We introduced NetME an efficient algorithm to investigate this idea. Sim-

ulated and biological data sets were used to construct full circular split systems

by NeighborNet and its variants, which are described in Chapter 4. The resulting

trees from NetME on these split systems were compared to the tree constructed

by FastME. The results for the simulations and the biological dataset suggest

that our approach could be of some interest and its constructed trees compare

equally or even favourably in many cases. In the next chapter we will investigate

some properties of circular split systems a bit further. In particular we are in-

terested in the trees that can be found in a circular split system using tree edit

operations, like the one FastME uses.
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Chapter 6

Trees in circular orderings

The content of this chapter is material in preparation to be submitted as part of

a paper in collaboration with V. Moulton, A. Spillner and T. Wu.

6.1 Summary

In the last chapter we presented an approach to reduce the search space for find-

ing an optimal tree by using circular split system. We found that NeighborNet

seems to perform well in capturing relevant information in order to construct a

tree satisfying the minimum evolution criterion. Another approach to search for

an optimal tree within circular split systems could be to use tree edit operations,

such as nni (nearest neighbour interchange), spr (subtree prune and regraft) and

tbr (tree bisection and reconnection), which we define below.

There are several questions that naturally occur when investigating this idea

which we shall focus on in this chapter. For example, given a tree T that is

contained in a circular ordering, how many trees are there in the same ordering

that can be found by applying one edit operation to T? We call this set of trees

the circular neighbourhood of the given tree for the applied tree edit operation.

It is known that for nni operations the size of this neighbourhood just depends

on the number of leaves in the given tree. However, we shall show that the size

of the circular tree neighbourhood for spr and tbr operations depends on the
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structure of the given tree. We shall also establish formulae that describe the

size as well as upper and lower bounds of the size of these neighbourhoods as

well as characterise the type of trees that lead to minimum and maximum size

neighbourhoods.

6.2 Background

We begin by defining some key concepts.

6.2.1 Tree operations

There are three operations on trees that commonly appear in the literature [1].

We begin by recalling tree bisection and reconnection (tbr), the most general of

the three. Let Otbr(T ) be the set of triplets (e1, e2; f) of edges in T , in which (i)

f is an edge on the path P (e1, e2), (ii) e1 and e2 share no common ends, and (iii)

|f ∩ei| ∈ {0, 2} for i = 1, 2, that is e1 and e2 can not be edges adjacent to f . Here

e1 and e2 are interchangeable, that is, (e1, e2; f) and (e2, e1; f) are regarded as the

same triplet in Otbr(T ). Each triplet θ = (e1, e2; f) in Otbr(T ) is associated with

a binary tree θ(T ) obtained from T by inserting a new edge between e1 and e2

(reconnection), and subsequently removing edge f (bisection). We require θ(T )

to be binary and therefore it is necessary to subdivide both e1 and e2 before in-

serting the new edge. Note that if f = e1 then we denote the two edges resulting

from subdividing e1 by e′1 and e′′1, so that E(P (e′1, e2)) ⊂ E(P (e′′1, e2)) and remove

e′1 to form θ(T ). Since e1 and e2 are interchangeable a similar connection applies

to the case f = e2. Our definition is equivalent to the one in [1], but here we use a

triplet of edges to characterise a tbr operation. Note that the third condition in

the definition is introduced to be consistent with [1], that is, each tbr operation

corresponds to precisely one triplet in Otbr(T ).

Subprune and regraft (spr) is a special case of tbr in which there is less freedom

for the choice of f in the triplet, that is, θ = (e1, e2; f) ∈ Otbr(T ) is an spr

operation for T if and only if f ∈ {e1, e2}. Nearest neighbour interchange (nni)

operations are spr (and hence also tbr) operations in which the triplets satisfy
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Figure 6.1: a) A tree T on 6 taxa b) θ(T ) where θ = (e1, e2; f) encodes a tbr
operation.

x1 x2

x3x4x5x6

e1 e2 = f

a)

x1 x2

x3x4 x5

x6

b)

Figure 6.2: a) A tree T on 6 taxa b) θ(T ) where θ = (e1, e2; f) and f = e2 encodes
a spr operation.

an even more restrictive condition; P (e1, e2) contains exactly three edges and

f ∈ {e1, e2}. An example of a tbr operation is given in Figure 6.1. Figure 6.2

shows an example of a spr operation and a nni operation is depicted in Figure

6.3.

x1 x2

x3x4x5x6

e1

e2 = f

a)

x1 x2

x3x4x5

x6

b)

Figure 6.3: a) A tree T on 6 taxa b) θ(T ) where θ = (e1, e2; f), f = e2 and
|E(P (e1, e2))| = 3 encodes a nni operation.

Note that the following clearly holds,

Onni(T ) ⊆ Ospr(T ) ⊆ Otbr(T )
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for any tree T . Given two phylogenetic trees T and T ′ with the same leaf set, the

tbr distance dtbr(T, T ′) between T and T ′ is defined as the minimum number

of tbr operations that is required to be applied one-by-one to change T into T ′.

The spr distance dspr(T, T ′) and nni distance dnni(T, T
′) are defined in a similar

manner. Note that dnni(T, T
′) ≥ dspr(T, T ′) ≥ dtbr(T, T ′) all clearly hold.

6.2.2 Circular orderings

We now recall some notations related to circular ordering and trees, mainly follow-

ing the ones used in [80]. Let π = (x1, x2, . . . , xn) be a circular ordering as defined

in Chapter 2.4.1. Note that (x1, x2, . . . , xn) and (xi, xi+1 . . . , xn, x1, . . . , xi−1) rep-

resent the same ordering. For a non-empty subset Y of X, let π(Y ) denote the

circular ordering of Y obtained by restricting π to Y . Given a circular ordering

π the full split system induced by π is denoted by Σo(π) = {Aij | (X −Aij) : 1 ≤
i ≤ j ≤ n − 1}. Note that π is a circular ordering for T if Σ(T ) ⊆ Σo(π). Let

(T, π) be a pair consisting of a phylogenetic tree T on X and a circular ordering

π on X such that π is a circular ordering of T . The set of phylogenetic trees,

for which π is a circular ordering, is denoted by Tπ. By [80, Proposition 3.1], we

know the number of trees in Tπ for n ≥ 3 is given by the (Catalan) number

2n−2(2n− 5)!!

(n− 1)!
=

1

n− 1

(
2n− 4

n− 2

)
.

The following result was established by Semple and Steel [80]. It is important

since it allows us to use subsets of X of size four to characterise the circular

orderings of a phylogenetic tree on X.

Theorem 6.2.1. [80, Theorem 3.4] Let π = (x1, . . . , xn) be a circular ordering

of X and let T be a phylogenetic tree on X. Then π is a circular ordering for

T , that is, T ∈ Tπ, if and only if for all subsets Y of X of size four, π(Y ) is a

circular ordering for T (Y ), that is Σ(T (Y )) ⊆ Σo(π(Y )).

Let Pi = Pi,π be the canonical path of (T, π), that is the path in T from xi to xi+1

for all 1 ≤ i ≤ n. Fix a circular ordering π and a tree T ∈ Tπ. To each edge e in
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T we associate a pair of indices (i, j) with 1 ≤ i < j ≤ n, which will be referred

to as the canonical index pair for e, such that e is contained in Pi and Pj.

In addition, let P+
e,π be the path in T from xi to xj+1, and P−e,π be the path in

T from xi+1 to xj (see Example below). Note that the split induced by e is

Ai+1,j|(X − Ai+1,j). Finally, we let

α(T, π) =
∑

e∈E(T )

(|E(P+
e,π)|+ |E(P−e,π)|)

and

β(T, π) =
∑

e∈E(T )

(|E(P+
e,π)| − 2)× (|E(P−e,π)| − 2).

We will see that the formula for α(T, π) can be simplified using the canonical

paths of (T, π). Note also that by [80, Theorem 3.2], each edge e of T occurs in

exactly two canonical paths of (T, π).

x7

x1

x6

x5x4

x3x2

P6

P1

e

Figure 6.4: Given is the tree T on X =
{x1, ..., x7}, the dashed lines show the
canonical paths P1 and P6, which both
contain the edge e. See Example for fur-
ther explanation.

Example Let X = {x1, . . . , x7}
and π = (x1, . . . , x7). Consider

the tree T depicted in Fig. 6.4.

The edge e corresponds to the split

Se = {x2, x3, x4, x5, x6}|{x7, x1}. The

canonical index pair for edge e is (1, 6),

because it is contained in the canonical

paths P1 and P6 as shown in Fig. 6.4.

The path P+
e,π is the path from x1 to

x7 and P−e,π is the path from x2 to x6.

Considering all edges in T we see that

α(T, π) = 54 and β(T, π) = 2.
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6.2.3 Plane binary trees

Given an interior vertex v in a binary tree T , let N(v) = {v1, v2, v3} be the

triplet of neighbours (adjacent vertices) of v and κ(v) a cyclic permutation of

N(v), that is, κ(v) = (v1, v2, v3) = (v2, v3, v1) = (v3, v1, v2) or (v3, v2, v1) =

(v2, v1, v3) = (v1, v3, v2). A plane binary tree is a triplet (V,E, κ) consisting of the

tree T = (V,E) together with κ, which embeds the tree in the plane. Two plane

trees T̂1 = (V1, E1, κ1) and T̂2 = (V2, E2, κ2) are isomorphic if there is a graph

isomorphism f : (V1, E1) → (V2, E2) such that κ1(v) = (vi, vj, vk) if and only

if κ2(f(v)) = (f(vi), f(vj), f(vk)). Table 6.1 shows the number of non-isomorph

plane trees for up to eight leaves.

x1

x2

x3 x4

x5

x6

x7

v1
v2

v3 v4
v5

T1

a)

x1

x2

x3

x4

x5

x6x7

v1
v2 v3

v4
v5

T2

b)

Figure 6.5: An example of two isomorph plane trees on 7 leaves.

Example In Figure 6.5 two isomorph plane trees are shown. The cyclic permu-

tation induced clockwise by the interior vertex v1 in T1 is κ(v1) = (x1, x2, v2). In

T2, f(v1) = v5 and the cyclic permutation induced clockwise is κ(v5) = (x4, x5, v4)

where x4 = f(x1), x5 = f(x2), v4 = f(x2). In Figure 6.6 the 6 possible plane trees

for 7 taxa are shown.

Given a tree T = (V,E), there is a one-to-one correspondence between the set

of plane trees T̂ = (T, κ) and the set of circular orderings π such that T ∈ Tπ.

This means if two trees are isomorphic as plane trees, they have the same circular

ordering. Note that the plane binary trees that are isomorphic to each other also

have the same α and β regardless the labelling of the leaves.
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n 4 5 6 7 8
Number of plane trees 1 1 4 6 19

Table 6.1: Number of possible plane trees for n leaves.
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Figure 6.6: The six plane tree on seven leaves and a circular ordering π.

6.3 Circular tree operations

Given a circular ordering π = (x1, . . . , xn) and T ∈ Tπ, as mentioned before, in

some applications it is desirable to consider the tree rearrangement operations θ

that preserve the circular ordering π, that is, operations θ such that θ(T ) ∈ Tπ.

Let

Oπ
tbr(T ) := {θ ∈ Otbr(T ) : θ(T ) ∈ Tπ}

be the set of tbr operations preserving π. The members of Oπ
tbr(T ) will be re-

ferred to as circular tbr operations (with respect to π). Similarly, we can define

the set of circular spr operations Oπ
spr(T ) and the set of circular nni operations

Oπ
nni(T ) on a tree T .

The next theorem is a key technical result, which describes a structural charac-

terisation of the set of tbr operations preserving a given circular ordering.

Theorem 6.3.1. Given a circular ordering π, a tree T ∈ Tπ and an operation
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θ = (e1, e2; f) ∈ Otbr(T ), the following assertions hold:

(i) If f 6∈ {e1, e2}, then θ ∈ Oπ
tbr(T ) if and only if either e1 ∈ E(P+

f,π) and

e2 ∈ E(P−f,π) or e1 ∈ E(P−f,π) and e2 ∈ E(P+
f,π).

(ii) If f ∈ {e1, e2}, then θ ∈ Oπ
tbr(T ) if and only if either e1 = f and e2 ∈

E(P+
f,π) ∪ E(P−f,π), or e2 = f and e1 ∈ E(P+

f,π) ∪ E(P−f,π).

Proof. (i) “⇐” Given a circular ordering π we fix T ∈ Tπ. Let θ = (e1, e2; f) ∈
Otbr(T ) where f /∈ {e1, e2} and since (e1, e2; f) and (e2, e1; f) are interchange-

able, we can assume e1 ∈ E(P−f,π) and e2 ∈ E(P+
f,π). The edge f induces the split

Sf = Ai+1,j|(X − Ai+1,j) and the canonical pair index of f is (i, j) so P−f,π is the

path from xj to xi+1 and P+
f,π is the path from xi to xj+1 (see Figure 6.7a).

We want to show that applying θ to T yields a tree θ(T ) = T ′ which preserves

the circular ordering π, that is T ′ ∈ Tπ. This is equivalent to showing that

Σ(T ′) ⊆ Σo(π). Since Σ(T ) ⊆ Σo(π) it suffices to show that

(Σ(T ′)− Σ(T )) ⊆ Σo(π).

We have to determine the splits contained in (Σ(T ′)−Σ(T )) and show that these

splits are also in Σo(π). There are five cases to consider: the split induced by the

newly inserted edge f ′ (case 1); what happens to the edges adjacent to the edge

f that is removed (case 2); and the edges that are formed by splitting e1 and e2

when inserting f ′ (case 3); splits that are induced by the other edges along the

paths P (e1, f), P (e2, f) that are not covered by the second and third case (case

4); and all other edges in T (case 5).

Case 1: In T , f induces split Sf . The tree T ′ results from T by deleting f and

inserting a new edge f ′ between e1 and e2. The edge f ′ induces exactly the same

split as f , so Sf ′ = Sf ∈ Σo(π).

Let TA be the subtree in T that is adjacent to f such that xj ∈ V (TA) and TB

is the other subtree of T that is adjacent to f . For the following four cases we

consider edges in TA, but can similarly established the results for the edges in TB.

Case 2: Let f1, f2 ∈ E(P−f,π) be adjacent to f in TA. In particular let f2 ∈ P (e1, f)
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(see Figure 6.7a). By removing edge f the two edges f1 and f2 are collapsed into

one edge f ′1. Therefore the split Sf2 /∈ Σ(T ′) and Sf ′1 = Sf1 .

In the remaining cases we assume the edge e1 induces the split Se1 = Ak,j|(X −
Ak,j) where i+ 1 < k ≤ j.

Case 3: By inserting f ′, e1 is split into two edges e′1 and e′′1. Let e′1 be on the path

P (e′′1, f
′
1) and e′′1 /∈ E(P (e′1, f

′
1)) (see Figure 6.7b) then Se′′1 = Se1 and Se′1 = Ak,j ∪

(X −Ai+1,j)|(Ai+1,j −Ak,j) = {xk, . . . , xj, xj+1, . . . , xi}|{xi+1, . . . , xk−1} ∈ Σo(π).

Case 4: For each split Se = Al,j|(X − Al,j) induced by an edge e along the

path P (e1, f1) in T and e /∈ {e1, f1} there is an edge e′ on the path P (e′1, f
′
1),

e′ /∈ {f ′1, e′1} in T ′ such that

Se′ = Al,j|(X − Al,j) = {xl, . . . , xj, xj+1, . . . , xi}|{xi+1 . . . , xl−1} ∈ Σo(π)

. These last two results can be similarly established for Se1 = Ai+1,k|(X−Ai+1,k).

Case 5: All other splits induced by edges in subtrees adjacent to P (e′1, f
′
1) in T ′

are exactly the same as the splits induced by edges in the subtrees adjacent to

P−f,π (see Figure 6.7a and b).

“⇒” We shall establish this direction by contradiction. To obtain a contradic-

tion, we assume θ = (e1, e2; f) ∈ Oπ
tbr(T ), e1 and e2 are interchangeable and

e1 6∈ E(P+
f,π) ∪ E(P−f,π). Let (i, j) be the canonical index pair associated with

f ; then we have Sf = Ai+1,j|(X − Ai+1,j). Since Sf and Se1 are compatible

and Sf 6= Se1 , we know there is a unique side of Se1 , denoted by A1, that is a

proper subset of a side of Sf . We further assume A1 ⊂ Ai+1,j; the other case

A1 ⊂ (X − Ai+1,j) can be established similarly.

Now, fix an element y1 ∈ A1. Since e1 6∈ P−f,π = P (xi+1, xj), we know {xi+1, xj}∩
A1 = ∅. On the other hand, as f is contained in the path P (e1, e2) with f 6∈
{e1, e2}, we know that Se2 contains a unique side, denoted by A2, such that it is

a proper subset of (X − Ai+1,j). An example of this case is illustrated in Figure
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6.8a. Consider an element y2 ∈ A2. Then clearly Y := {y1, y2, xj, xi+1} consists

of four distinct elements. Between the two edges in θ(T ) obtained from dividing

e1, we denote one edge by e′1 and the other one by e′′1 such that P (xj, e
′
1) ⊂

P (xj, e
′′
1). Then the split restricted on Y of Σ(θ(T (Y ))) induced by e′1 is Se′1(Y ) =

{y1, y2}|{xj, xi+1} (see Figure 6.8b). Since the circular ordering on Y was π(Y ) =

(y1, xj, y2, xi+1), we know Se′′1 (Y ) 6∈ Σo(π(Y )). Together with Theorem 6.2.1, this

implies θ(T ) 6∈ Tπ, a contradiction as required.

(ii) The proof of (ii) is similar to that of (i).

f

e1 e2

xj

xi+1 xi

xj+1

P−
f,π P+

f,π

f1

f2

T

xk

a)

e′1

xj

xi+1 xi

xj+1

e′′1

f ′

f ′
1

T ′

T ′
A T ′

B

xk

b)

Figure 6.7: a) Given the tree T , the edge f induces the split Sf = Ai+1|(X−Ai+1,j)
and P−f,π is the path from xj to xi+1 and P+

f,π the path from xj+1 to xi. We consider

the tbr operation θ = (e1, e2; f) where e1 ∈ E(P−f,π) and e2 ∈ E(P+
f,π). b) In

θ(T ) = T ′ the edge f ′ induces the split Sf ′ = Sf , f
′
1 induces the split Sf ′1 = Sf1 ,

and the edge e1 is split into two edges e′1 and e′′1. The splits induced by edges in
the subtrees adjacent to P (f1, e

′′
1) in T ′ are the same splits as in T .

Corollary 6.3.2. Given a circular ordering π, a tree T ∈ Tπ and an operation

θ = (e1, e2; f) ∈ Otbr(T ) then θ ∈ Oπ
spr(T ) if and only if either e1 = f and

e2 ∈ E(P+
f,π) ∪ E(P−f,π), or e2 = f and e1 ∈ E(P+

f,π) ∪ E(P−f,π).

Proof. This is a direct consequence of Theorem 6.3.1(ii).
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f

e1 e2

xj

xi+1 xi

xj+1

T

y1
y2

a)

xi+1 xi

T

f ′

y1 y2

xj xj+1

e′′1
e′1

b)

Figure 6.8: Given the tree T , the edge f induces the split Sf = Ai+1,j|(X−Ai+1,j)
and P−f,π is the path from xj to xi+1 and P+

f,π the path from xj+1 to xi. We consider

the tbr operation θ = (e1, e2; f) where e1, e2 /∈ E(P+
f,π) ∪ E(P−f,π). The edge e1

induces the split Se1 = A1|(X − A1) where y1 ∈ A1 and the edge e2 induces the
split Se2 = A2|(X − A2) where y2 ∈ A2. The ordering of the four element set
Y = {xj, xi+1, y1, y2} is π(Y ) = (y1, xj, y2, xi+1). b) In θ(T ) = T ′ the ordering of
the elements of Y is π(Y ) = (y1, y2, xj, xi+1).

6.4 Tree neighbourhoods

The tbr neighbourhood of T is the set

Ntbr(T ) = {θ(T ) : θ ∈ Otbr(T )}

consisting of all trees that are precisely one tbr operation from T . The nni

neighbourhood Nnni(T ) and the spr neighbourhood Nspr(T ) are defined similarly.

Clearly, we have

Nnni(T ) ⊆ Nspr(T ) ⊆ Ntbr(T ).

For a tree T ∈ Tn, where n ≥ 4, Robinson [74] showed |Nnni(T )| = 2n− 6, while

Allen and Steel [1] proved that |Nspr(T )| = 2(n− 3)(2n− 7). On the other hand,
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|Ntbr(T )| depends on the topology of T , and in a recent study [48], it was shown

|Ntbr(T )| = −(4n− 2)(n− 3) + 4
∑

A|B∈Σ(T )

|A| × |B|,

where the sum is taken over all non-trivial splits A|B of T . One important step

used to establish this result on Ntbr(T ) is the following lemma, which generalises

an observation by Allen and Steel [1, Theorem 2.5] on spr operations to tbr

operations, and will be useful for us.

Lemma 6.4.1. [48] Let θ, θ′ ∈ Otbr(T ) be two distinct tbr operations. If θ(T ) =

θ′(T ), then θ ∈ Onni(T ).

Let T ∈ Tπ. The circular tbr neighbourhood of T with respect to π is the set

Nπ
tbr(T ) := Ntbr(T ) ∩Tπ

consisting of all trees in Tπ that are precisely one tbr rearrangement operation

from T . The circular nni neighbourhood Nπ
nni(T ) and the circular spr neigh-

bourhood Nπ
spr(T ) are defined accordingly.

In this section, we shall investigate the size of the spr and tbr circular neighbour-

hoods. One key tool we will use is the following lemma, which is a consequence

of Lemma 6.4.1.

Lemma 6.4.2. Let θ, θ′ ∈ Oπ
tbr(T ) be distinct tbr operations. If θ(T ) = θ′(T ),

then θ, θ′ ∈ Oπ
nni(T ).

By the above lemma, we have

Lemma 6.4.3. For a tree T ∈ Tπ with π a circular ordering on n ≥ 4 elements,

we have

|Nπ
spr(T )| = |Oπ

spr(T )| − 3|Nπ
nni(T )| = |Oπ

spr(T )| − 3(n− 3),

and

|Nπ
tbr(T )| = |Oπ

tbr(T )| − 3|Nπ
nni(T )| = |Oπ

tbr(T )| − 3(n− 3).
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Proof. Note that for each T ′ ∈ Nπ
nni(T ), there are exactly four distinct operations

θ ∈ Oπ
nni(T ) with θ(T ) = T ′. This is illustrated in Figure 6.9. Together with

Lemma 6.4.2 and since |Nπ
nni(T )| = n− 3, this implies the lemma.

A

B

D

CT ′

a)

e1 e2

e1 e2

A B

D C

T

b)

Figure 6.9: a) The tree T ′ ∈ Nπ
nni and in b) all four operations θ ∈ Oπ

nni(T ) that
result in T ′. Recall that the operation θ = (e1, e2; f) where f = e1 yields the
same tree as θ with f = e2.

Lemma 6.4.3 forms the basis of calculating the size of circular spr and circular

tbr neighbourhoods because both the number of distinct circular spr operations

and the number of distinct circular tbr operations for any given tree and circular

ordering can be found relatively easily. We proceed with the spr case first.

Theorem 6.4.4. For a tree T ∈ Tπ with π a circular ordering on n ≥ 5 elements,

we have

|Nπ
spr(T )| = α(T, π)− 9n+ 21.

Proof. By Lemma 6.4.3, it suffices to show

|Oπ
spr(T )| = α(T, π)− 6n+ 12. (6.1)

Since for spr f ∈ {e1, e2} we may assume that e1 = f holds for all operations

(e1, e2; f) in Oπ
spr(T ) because by definition (e1, e2; f) and (e2, e1; f) are regarded

as the same operation. The operations (e1, e2; f) in Oπ
spr(T ) can be divided into

two types, according to whether f = e1 is a pendant edge. We start by counting

the number of operations whose last coordinate is a pendant edge. Note that for

each pendant edge f , exactly one of the two paths P+
f,π and P−f,π contains no edges

and the other one at least one non-trivial edge. We denote the path containing

94



at least one non-trivial edge by Pf,π.

By Theorem 6.3.1 we know that (e1, e2; f) ∈ Oπ
spr(T ) if and only if e2 is contained

in Pf,π and e2 shares no common ends with e1 = f . Since there are exactly

|E(Pf,π)| − 2 edges contained in Pf,π that do not incident with f , we know the

number of operations in Oπ
spr(T ) whose last coordinate is f is |E(Pf,π)|−2, which

equals to |E(P+
e,π)|+ |E(P−e,π)| − 2 (See Figure 6.10a).

For the case in which the last coordinate f is an interior edge, the second coor-

dinate e2 could be any edge contained in P+
f,π or P−f,π that is not incident with f .

Clearly, the number of the edges satisfying this condition is |E(P+
f,π)|+|E(P−f,π)|−

4. Therefore, the number of operations in Oπ
spr(T ) whose last coordinate is f is

|E(P+
f,π)|+ |E(P−f,π)|−4 (see Figure 6.10b). Summing this up for all n−3 interior

edges and n pendant edges yields Equation (6.1).

f = e1
Pf,π

a)

f = e1
P+
f,πP−

f,π

b)

Figure 6.10: Given a tree T and θ(e1, e2; f) where f = e1 a) The situation if f
is a pendant edge and b) if f is an interior edge. The edges incident to f are
highlighted bold.

We now consider tbr operations.

Theorem 6.4.5. For a tree T ∈ Tπ with a circular ordering π on n ≥ 4 elements,

we have

|Nπ
tbr(T )| = α(T, π) + β(T, π)− 9n+ 21.
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Proof. By Lemma 6.4.3, it suffices to show

|Oπ
tbr(T )| = α(T, π) + β(T, π)− 6n+ 12.

In view of Equation (6.1) established in the proof of Theorem 6.4.4, it remains

to prove that the number of operations in Oπ
tbr(T )− Oπ

spr(T ) is β(T, π). To this

end, note that for each operation θ = (e1, e2; f) ∈ Oπ
tbr(T )− Oπ

spr(T ), f must be

an interior edge of P (e1, e2) as otherwise f ∈ E(P (e1, e2)) implies f ∈ {e1, e2}, a

contradiction to θ 6∈ Oπ
spr(T ). For each interior edge f in T , by Theorem 6.3.1(i)

and switching e1 and e2 if necessary, we know (e1, e2; f) ∈ Oπ
tbr(T ) if and only if

e1 ∈ P+
f,π, e2 ∈ P−f,π, and e1 and e2 are not adjacent to f . Clearly, the number

of the pairs of edges satisfying this condition is (|E(P+
f,π)| − 2)× (|E(P−f,π)| − 2).

Summing this up for all choices of f , which is n− 3, we can conclude |Oπ
tbr(T )−

Oπ
spr(T )| = ∑f∈E(T )(|E(P+

f,π)| − 2)× (|E(P−f,π)| − 2) = β(T, π), as required.

In the remainder of this section we shall establish upper and lower bounds for

|Nπ
spr| and |Nπ

tbr| and present a characterisation of the trees (T, π) with the max-

imum size of Nπ
spr and Nπ

tbr and the trees (T, π) with the minimum size Nπ
spr and

Nπ
tbr. To this end, we begin with an alternative way of computing α(T, π).

Lemma 6.4.6. Given a circular ordering π = (x1, · · · , xn) and a tree T ∈ Tπ,

we have

α(T, π) =
n∑
i=1

|E(Pi)|(|E(Pi)| − 1),

where Pi = Pi,π (1 ≤ i ≤ n) is the canonical path in T from xi to xi+1.

Proof. Let {e1, .., em} be the edge set of T , where m = 2n − 3. Consider the

incident index δ between edges and the canonical paths defined by

δi,k =

1, if ek ∈ E(Pi),

0, otherwise,

for 1 ≤ i ≤ n and 1 ≤ k ≤ m. Since each edge e occurs in exactly two of the

canonical paths in {P1, P2, . . . , Pn}, we have
∑n

i=1 δi,k = 2 for each k. On the

other hand,
∑m

k=1 δi,k = |E(Pi)| clearly holds for 1 ≤ i ≤ n.
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x1

x2 x3

x4

x5

x6x7

x8

e

Figure 6.11: A tree T on X = {x1, . . . , x8} and a circular ordering π =
(x1, . . . , x8), the edge e has the canonical index (1, 5) the path P−e,π from x2 to x5

and the path P+
e,π from x6 to x1 are highlighted in bold. The canonical paths P5

from x5 to x6 and P1 from x1 to x2 are highlighted with dashed lines.

Now, fix an index k ∈ {1, . . . ,m} and let (j, j′) be the canonical index pair for

ek. Then we have

|E(P+
ek,π

)|+ |E(P−ek,π)| = |E(Pj)| − 1 + |E(Pj′)| − 1 =
n∑
i=1

δi,k(|E(Pi)| − 1).

Here the first equality follows from E(P+
ek,π

) ∪ E(P−ek,π) = E(Pj) ∪ E(Pj′)\{ek}
(see Figure 6.11), and the second one from δi,k = 1 if and only if i ∈ {j, j′}.
Therefore, we can conclude that

α(T, π) =
m∑
k=1

n∑
i=1

δi,k(|E(Pi)|−1) =
n∑
i=1

m∑
k=1

δi,k(|E(Pi)|−1) =
n∑
i=1

|E(Pi)|(|E(Pi)|−1).

Fixing a circular ordering π = (x1, . . . , xn) for n ≥ 4, we introduce two families

of trees that are important in this study: (T, π) is a skew caterpillar if it contains

a (necessarily unique) canonical path of size n − 1; (T, π) is a centipede if it

contains n − 4 canonical paths of size 4. See Fig. 6.12a for an illustration on a

skew caterpillar and b for a centipede. Note that for n > 4 a skew caterpillar

contains exactly two canonical paths of size 2 and n − 3 canonical paths of size

3, while a centipede contains precisely two canonical paths of size 2 and two

canonical paths of size 3. For n = 4 the skewed caterpillar and the centipede are
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x2

x1
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xn

xn−1xn−2

a)

x2

x1

x3

xn

xk−1
xk

xk+1xk+2

b)

Figure 6.12: Two caterpillars on Tπ with π = (x1, . . . , xn): a) a skew caterpillar
and b) a centipede (where k = bn/2c).

Figure 6.13: The three possible trees (ignoring the leaf labelling) on 6 leaves.

the same tree with two canonical paths of size 2 and two of size 3.

Theorem 6.4.7. Suppose that |X| = n ≥ 4. Given a circular ordering π =

(x1, ..., xn) and T ∈ Tπ, then we have

3n− 11 ≤ |Nπ
spr(T )| ≤ (n− 1)2 − 4n+ 8, (6.2)

where the minimum is achieved if (T, π) is a centipede and the maximum is

achieved if (T, π) is a skew caterpillar. Moreover for n ≥ 7 the minimum score

is achieved if and only if (T, π) is a centipede and the maximum score is achieved

if and only if (T, π) is a skew caterpillar.

Proof. For simplicity, let α∗(T, π) =
∑n

i=1 |E(Pi)|2, where P1, . . . , Pn is the set of

canonical paths of (T, π). Then by Lemma 6.4.6 and Theorem 6.4.4, we have

|Nπ
spr(T )| = α∗(T, π)− 13n+ 27.

Therefore it suffices to show that

26 + 16(n− 4) ≤ α∗(T, π) ≤ 8 + 9(n− 3) + (n− 1)2, (6.3)

and the minimum is achieved precisely when (T, π) is a centipede, and the max-
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imum is achieved precisely when (T, π) is a skew caterpillar. We will proof this

claim by induction on n = |X|.

Clearly, the result holds for the base case n = 4. There is one possible plane tree

for n = 5 and it is easy to check that α∗(T, π) = 42. The three possible plane

trees for n = 6 are shown in Figure 6.13. The centipede has an α∗(T, π) = 58

and the skewed caterpillar has α∗(T, π) = 60, the third tree has the same α∗ as

the skewed caterpillar, so we see Equation (6.3) also holds for this case. If n = 7

there are 6 plane trees (see Figure 6.6) and it is straightforward to check that

74 ≤ α∗(T, π) ≤ 80, where the minimum is achieved precisely when (T, π) is a

centipede, and the maximum is achieved precisely when (T, π) is a skew caterpil-

lar.

Now assume that n > 7 and the result holds for n−1. Without loss of generality,

we may assume that {x1, xn} is a cherry of T , that is, |E(Pn)| = 2. Let X ′ =

X − {xn}, π′ = (x1, . . . , xn−1) and T ′ be the tree obtained from T by removing

leaf xn and contracting the resulted degree two vertex. Let e′i be the pendant

edge incident to xi in T ′. Denoting the canonical paths of (T ′, π′) by P ′1, . . . , P
′
n−1,

then we have |E(P ′i )| = |E(Pi)| − 1 for i ∈ {1, n − 1} and |E(P ′i )| = |E(Pi)| for

1 < i < n− 1. This implies

α∗(T, π) = α∗(T ′, π′) + 2|E(P ′1)|+ 2|E(P ′n−1)|+ 6. (6.4)

Noting that P ′1 is the path between x1 and x2 in T ′, and P ′n−1 the path between

xn−1 and x1, we have

5 ≤ |E(P ′1)|+ |E(P ′n−1)| ≤ n. (6.5)

To see the first inequality holds, note that {xn−1, x1} and {x1, x2} cannot be both

cherries in T ′, and hence either P ′1 or P ′n−1 contains at least three edges while the

other one contains at least two edges. An example is illustrated in Figure 6.14a.

Now, let Eo(T ) be the set of the interior edges of T . To see the second inequal-
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ity holds, note that E(P ′1) ∩ E(P ′n−1) contains exactly the pendant edge e′1, and

(E(P ′1)∪E(P ′n−1)) ⊆ ({e′1, e′2, e′n−1}∪Eo(T ′)), where |Eo(T ′)| = n− 4 . Together

with Equation (6.4), this implies that Equation (6.3) also holds for n. An exam-

ple is illustrated in Figure 6.14b.

Clearly, if (T, π) is a centipede, then we have α∗(T, π) = 26 + 16(n − 4). Con-

versely, if α∗(T, π) = 26 + 16(n− 4), then by Equation (6.4) and Equation (6.5)

we know that the minimum change is |E(P ′1)| + |E(P ′n−1)| = 5. This results in

α∗(T ′, π′) = 26 + 16(n − 4) − (2 × 5 + 6) = 26 + 16(n − 5). Together with the

induction assumption, this implies that (T ′, π′) is a centipede, and hence (T, π)

contains exactly two canonical paths of size 2, two canonical paths of size 3, and

n− 4 paths of size 4. In other words, we can conclude that (T, π) is a centipede,

as required.

On the other hand, if (T, π) is a skew caterpillar, then α∗(T, π) = 8 + 9(n− 3) +

(n− 1)2. Conversely, if α∗(T, π) = 8 + 9(n− 3) + (n− 1)2, then by Equation (6.4)

and Equation (6.5) we know that the maximum change is |E(P ′1)|+|E(P ′n−1)| = n

and this results in α∗(T ′, π′) = 8 + 9(n − 3) + (n − 1)2 − (2n + 6) = 8 + 9(n −
4) + (n− 2)2. Together with the induction assumption, this implies that (T ′, π′)

is a skew caterpillar, and hence (T, π) contains a canonical path of size n − 1.

We can conclude that (T, π) is a skew caterpillar, which completes the induction

step, and hence also the proof of the theorem.

We established a lower and upper bound for the size of Nπ
spr(T ) and the lower

bound is achieved if T is a centipede and the upper bound is achieved if T is a

skewed caterpillar and n ≥ 4. In the last part of this chapter we will establish

upper and lower bounds for |Nπ
tbr(T )| and we characterise the trees that lead to

the minimum or maximum size Nπ
tbr(T ).

Lemma 6.4.8. Suppose that |X| = n ≥ 7. Given a circular ordering π =

(x1, ..., xn) and T ∈ Tπ, then we have

(n− 5) ≤ β(T, π) ≤ (n− 4)(n− 5)(n− 3)

6
, (6.6)
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x1

xn−1

x2

P ′n−1

P ′1

(a)

xn−1

x1 x2

P ′n−1

P ′1

e′1

e′n−1

e′2

(b)

Figure 6.14: a) A centipede with |E(P ′n−1)| = 2 and |E(P ′1)| = 3. b) A skew
caterpillar where |E(P ′n−1)| = |{e′n−1, e

′
1}| = 2 and |E(P ′1)| = |{e′1, e′2}∪Eo(T ′)| =

n− 2.

where if n ≥ 8 the minimum is achieved if and only if (T, π) is a centipede and

the maximum is achieved if and only if (T, π) is a skew caterpillar.

Remark: For n = 5 there is one possible topology [57] and β(T, π) = 0, so the first

part of the lemma holds, but for n = 6 there are 3 possible trees with β(T, π) = 1

for both the centipede and caterpillar and β(T, π) = 0 for the third possible tree.

Proof. We shall establish the lemma by induction on n = |X|. For n = 7

β(T, π) = 2 for the centipede and β(T, π) = 4 for the skew caterpillar, but

the score for the other possible trees are also either 2 or 4. For n = 8, β(T, π) = 3

holds if and only if T is a centipede, which is the smallest possible value for

β(T, π), and β(T, π) = 10 if and only if T is a skew caterpillar which is the high-

est possible value for β(T, π).

�� AA �� AA �� AA �� AA

v

u

g2
0g2

1g2
b g1

0 g1
1 g1

a
xn−1

Zb Z1 Y1 Ya

x2

x1xn

Figure 6.15: The tree T in the proof of Lemma 6.4.8.

Now assume that n > 8 and the result holds for n−1. Without loss of generality,
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we may assume that {x1, xn} is a cherry of T . Let u be the interior vertex incident

to both x1 and xn, and {u, v} the edge inducing the split {x1, xn}|X − {x1, xn}.
In addition, denote the edges in the path from v to x2 consecutively by g1

0 to

g1
a, and those in the path from v to xn−1 by g2

0 to g2
b , (see Fig. 6.15 for an illus-

tration). Without loss of generality, we may further assume that a ≥ b, which

implies a ≥ 1. On the other hand, we have a + b ≤ n− 4 as T contains at most

n− 3 interior edges.

Consider the path P ∗ between x2 to xn−1, that is, E(P ∗) = {g1
a, . . . , g

1
0, g

2
0, . . . , g

2
b}.

Let Eo(P ) be the set of the interior edges of P (x, y), that is, the edges in

E(P (x, y)) that are incident to neither x nor y. Then for each edge e ∈ Eo(P ∗),

let P o
e be the unique path in {P+

e,π, P
−
e,π} that does not contain the edge {u, v}

and P 1
e the other one. In addition, for any edge e in Eo(T )− (Eo(P ∗)∪{{u, v}}),

neither P+
e,π nor P−e,π contains {u, v}. Let X ′ = X−{xn}, π′ = (x1, . . . , xn−1) and

T ′ be the tree obtained from T by removing leaf xn and contracting the resulted

degree two vertex. While for all e ∈ E(P ∗) in T ′ the path P 0′
e is the same as in

T , the path P 1′
e in T ′ has one edge less than P 1

e , that is |E(P 1′
e )| = |E(P 1

e )| − 1.

Therefore

β(T, π)− β(T ′, π′) =
∑

e∈E(P ∗)

(|E(P o
e )| − 2)(|E(P 1

e )| − 2) (6.7)

−
∑

e∈E(P ∗)

(|E(P o
e )| − 2)(|E(P 1

e )| − 3)

=
∑

e∈Eo(P ∗)

(|E(P o
e )| − 2).

We can have maximal two interior edges e of P ∗ with |E(P o
e )| = 2 (if e is adja-

cent to a cherry), but for n > 6 at least one e ∈ Eo(P ∗) must have |E(P o
e )| = 3.

Therefore we have β(T, π) − β(T ′, π′) ≥ 1, and it is straightforward to check

that the equality holds when (T, π) is a centipede. Together with the induction

assumption, if (T, π) is a centipede, we have β(T, π) = (n − 5). Conversely if

β(T, π) = (n−5) then the minimum change is
∑

e∈Eo(P ∗)(|E(P o
e )|−2) = 1, which

leads to β(T ′, π′) = (n−6). This implies that (T, π) is a centipede with two edges

adjacent to the two cherries where (|E(P+
e )|− 2)× (|E(P+

e )|− 2) = 0 and (n− 5)
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edges where (|E(P+
e )| − 2)× (|E(P+

e )| − 2) = 1.

Now we will investigate the tree topology with the maximum size of β(T, π). Let

ϕ(i, j) = (1 + . . . + i) + (1 + . . . + j) for 0 ≤ i ≤ a, 0 ≤ j ≤ b. As established

above the difference between β(T, π) and β(T ′, π′) is∑
e∈Eo(P ∗)

(|E(P o
e )| − 2) =

∑
e∈Eo(P ∗)

|E(P o
e )| − 2(a+ b).

Note that each edge g1
i contributes i to

∑
e∈Eo(P ∗) |E(P o

e )| and g2
j contributes j.

Let F = E(T )−{{{u, x1}, {u, xn}, {u, v}}∪E(P ∗)}. For each edge f ∈ F , there

exists at most one e ∈ Eo(P ∗) with f ∈ E(P o
e ) and |F | can be (2n−3)−3−|E(P ∗)|

at most, so we can conclude that

β(T, π)− β(T ′, π′) ≤ ϕ(a, b) + (2n− 6)− |E(P ∗)| − 2(a+ b) (6.8)

= ϕ(a, b) + (2n− 6)− (a+ b)− 2− 2(a+ b)

≤ (1 + · · ·+ (a+ b)) + (2n− 6)− 3(a+ b)− 2

≤ (1 + · · ·+ (n− 4)) + (2n− 6)− 3(n− 4)− 2

= (n− 4)2 + (n− 4)/2− n+ 4

= (n2 − 9n+ 20)/2.

Here one necessary and sufficient condition for the above equalities holding is

b = 0 and a + b = n − 4, that is, T is a skew caterpillar. Together with the

induction assumption, we know that β(T, π) ≤ (n−4)(n−5)(n−3)
6

, in which case the

equality holds if and only if (T, π) is a skew caterpillar. This completes the proof

of the induction step, and hence also the lemma.

Theorem 6.4.9. Suppose that |X| = n ≥ 7. Given a circular ordering π =

(x1, ..., xn) and T ∈ Tπ, then we have

4(n− 4) ≤ |Nπ
tbr(T )| ≤ (n3 − 6n2 + 11n− 6)/6, (6.9)

where if n ≥ 8 the minimum is achieved if and only if (T, π) is a centipede and

the maximum is achieved if and only if (T, π) is a skew caterpillar.
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Proof. By Theorem 6.4.4 and Theorem 6.4.5, we know that

|Nπ
tbr(T )| = |Nπ

spr(T )|+ β(T, π).

Together with Theorem 6.4.7 and Lemma 6.4.8, this implies the theorem, as

required.

6.5 Concluding remarks

In this chapter we established formulae that describe the size of nni, spr and tbr

neighbourhoods of a tree where the circular ordering of the leaves is preserved.

We found upper and lower bounds for the size of these neighbourhoods and char-

acterised the type of trees that have minimum or maximum size neighbourhoods.

In further investigations the size of the split neighbourhoods of circular tree edit

operations could also be established [78, in preparation]. In the next chapter we

shall conclude with an outlook of some possible future directions.
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Chapter 7

Discussion and future work

7.1 Conclusions and future work

The use of networks in phylogenetic studies has become increasingly popular in

recent years. This is mainly due to the fact that there are cases where evolu-

tionary processes cannot be represented by a tree, such as hybridisation in plants

or horizontal gene transfer in micro-organisms. Even if a tree-like evolution is

expected, methodological errors can lead to conflicting signals in the data that

must be identified and potentially removed [65].

Data-displaying networks give a snapshot of the data and enable us to display

conflicting signals, even if the cause of these conflicts is not known. One of the

main examples for these kind of networks are split networks, which are based on

split systems. In this thesis we investigated circular split systems, which have the

property of being representable in two dimensions without crossing edges as an

outer-labelled planar split network. This is desirable because these networks can

be more easily analysed than higher dimensional networks.

More specifically, we developed methods for constructing circular split systems

from a set of trees and from distance data, used them to find approximations for

minimum evolution trees and established some of their mathematical properties.

In Chapter 3 we introduced SuperQ, a method to construct a weighted circular
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split network from a set of partial input trees. SuperQ is a novel approach which

incorporates the edge weights of the input trees. While it produces results that

are in good agreement with former methods, it has some additional advantages,

for example it could be used on partial networks and the resulting networks are

independent of the order that the input is processed. A general problem of us-

ing quartet methods, such as SuperQ, is that memory consumption for storing

quartets grows in O(n4) where n is the number of taxa. SuperQ would benefit

from a more efficient way to store quartets, so this would be a direction for im-

provement. The publication of the SuperQ paper generated a lot of interest and

was discussed by several researchers well known in the area of phylogenetics (see

for example [67]). It also seems like that the implementation of SuperQ is being

downloaded and used by researchers and so we hope to see several citations for

the paper over the coming years.

In Chapter 4 we reviewed the NeighborNet algorithm and used the framework by

Levy and Pachter to introduce a greedy minimum evolution adaptation of Neigh-

borNet. We then investigated the problem of finding a minimum evolution tree

within circular split systems. The methods discussed in Chapter 4 are compared

according to their ability to capture relevant information for the construction of

minimum evolution trees. Based on the comparison to FastMe, we concluded that

circular split systems do capture this information well. NeighborNet in particular

generated good results for both treelike and non-treelike data, but in general the

trend was that our method performs particularly well in comparison to FastME

when applied to data which contains conflicting signals. These results are inter-

esting and quite surprising because a circular split system captures just a tiny

fraction of the whole search space for trees.

Although we worked with the minimum evolution criteria to construct phyloge-

nies, the balanced minimum evolution criterion is also a commonly used alter-

native. FastME makes use of this criterion for example. It might be possible to

adapt our approach in Chapter 5 to find the balanced minimum evolution tree

within a circular split system. We started to investigate this idea, but could not

work out how to built up solutions for a problem from the solutions of its sub-
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problems, since in the balanced minimum evolution framework each edge length

in a tree depends on the internal structure of its adjacent subtrees.

It could also be interesting to adapt our approach to consider different kinds of

split systems, such as flat split systems [82]. FlatNJ is a method to produce a flat

split system from quartets [2]. This type of split system can also be represented

in a two dimensional split network, but not always by an outer-labelled graph.

Instead flat split systems are representable by a planar graph in which internal

vertices can be labelled with taxa as well. Therefore these networks can display

more information than circular split networks. Another future direction could be

to develop restricted approaches for rooted trees, where special classes of cluster

systems could be considered as search spaces.

After finding such interesting results in Chapter 5 we wanted to investigate cir-

cular split systems in depth and from a more theoretical point of view. Since

FastME uses tree edit operation to search tree space we were intrigued what

properties tree edit operations that preserve a circular ordering of a tree might

have. In Chapter 6 we established the sizes of circular tree neighbourhoods for

the different tree edit operations as well as their upper and lower bounds. We

also characterised the trees that have the minimum and maximum size neigh-

bourhoods. This would also be interesting to investigate in a similar manner for

other types of split systems, like flat split systems.

Split networks are used to visualise conflicts. A lot of current work in the area of

phylogenetic networks is focusing on developing methods that not only display

conflicts but also identify their cause. This is often difficult and leads to less

efficient methods. However, it seems like fast methods for constructing networks

are in demand as researchers are realising the potential of using phylogenetic net-

works, rather than trees, in certain situations.

As networks become more frequently used it is important to establish criteria for

their construction. For example, recent attempts were made to define a parsi-

mony score for networks and the associated optimisation problems were proven to
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be NP-hard [15, 32, 42]. It would be interesting to see if the minimum evolution

score can be extended to networks.

In [17], Catanzaro describes several versions of the minimum evolution problem

and their hardness. To the best of our knowledge the hardness of the minimum

evolution problem for trees as defined in this thesis is still open. The balanced

minimum evolution problem on the other hand has been shown to be NP-hard

[31]. As mentioned above, it would be interesting to see if this can also be shown

for the balanced minimum evolution problem restricted to a circular split system.

The way information is displayed in terms of networks and if improvements are

possible could also be the subject of future investigations. For example, it is not

really possible to highlight trees within split networks, because all parallel edges

that correspond to a split must be highlighted which leads quickly to a very con-

fusing picture.

7.1.1 A phylogenetic toolkit

In the course of conducting research described in this thesis we implemented sev-

eral useful tools, data structures and algorithms. We would like to distribute

these implementations, together with an implementation of FlatNJ and a tool

that draws two dimensional split networks in a single package that is freely avail-

able to the public.

Such a software package is currently work in progress in a collaboration with

Daniel Mapleson, Andreas Spillner and Monika Balvociute. The aim is to pro-

vide an open source software package that contains a number of reusable and

extendible tools for creating phylogenetic trees and networks. The tools should

work well both at the command line, so that they can be easily integrated into

bioinformatics pipelines, and, where applicable, should have graphical front ends,

so that they are easy to use for those who are not familiar with running tools from

the command line. In addition, we will provide common methods and functional-
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ity as a library so that other software developers, for example PhD students and

PostDocs can easily reuse and extend the toolkit, and speed up the development

of their own tools.

There are several other software packages bundling phylogenetic tools, such as

Phylogenetics Analysis Library (PAL) [26], the Phylogeny Inference Package

(Phylip) [30], Splitstree [49], Phylogenetic Analysis Using Parsimony (PAUP)

[84] and Molecular Evolutionary Genetics Analysis (MEGA) [85].

PAL, like our toolkit, is an open source library of commonly used data struc-

tures and algorithms for phylogenetics analysis implemented in Java. However,

the last changes to PAL were made in 2002 and since then many developments

have occurred in both the area of phylogenetics and methods for creating and

distributing software.

Phylip, has had an impressively long life (created in 1980) and is still very much

alive (last update was mid 2013). It does not have much overlap with our toolkit

in terms of functionality. The design goal for Phylip is to infer evolutionary trees

from distance matrices, so there is not much functionality related to creating and

manipulating networks, which is the focus of our package. Nevertheless, Phylip

was inspriring in terms of its design philosophy as it is a collection of stand alone

tools that have a consistent interface. This is useful in bioinformatics pipelines,

where users may want to chain tools together. However, it does not provide

shared libraries which other software developers can easily reuse.

Splitstree shares the most functionality with our toolkit, specifically with regards

to computing unrooted phylogenetic networks. However, it does not provide the

same methods. It is also written in Java and is freely available. However, it is

not open source which restricts other developers from improving the software and

reusing its functionality in other projects. In addition, due to dependencies on

graphical subsystems (at least in its current version Splitstree4), Splitstree does

not run well in high performance computing environments.

109



PAUP, commercial software, and MEGA (free for academic research use) are

packages for inferring phylogenies using parsimony and maximum likelihood meth-

ods that have large user bases. They however, do not use networks and therefore

do not overlap with our phylogenetics toolkit.

As previously mentioned, we have two core aims for our toolkit. The first is to

provide open source implementations of the methods mentioned in this thesis as

a set of stand alone tools. The second, is to capture reusable data structures and

algorithms in an open source software library, which can be readily integrated

into other projects. We will achieve this by hosting the library on a publicly ac-

cessible Maven repository. To make the development process transparent, all the

source code, along with its version history, will be visible online via a web-based

hosting service called GitHub. GitHub also makes it easy for the community to

participate in extending and improving the software.

Our other objective for the toolkit is to make the interfaces, both command line

and graphical, consistent and logically designed throughout the project. In ad-

dition, we will provide a manual which will contain detailed information about

each executable tool and the shared functionality in the library.

The Phylogenetic toolkit will contain the following ready-to-use tools:

� SuperQ, as described in Chapter 3, constructs a weighted circular split

system from a set of partial input trees.

� QNet, a method to construct a weighted circular split system from a set of

weighted quartets [38].

� NetMake, allows the user to construct a weighted circular split system from

distances by using different versions of NeighborNet as for example the ones

described in Chapter 4.

� FlatNJ, implemented by Monika Balvociute [2], is a method to construct a

weighted flat split system from a set of weighted quartets.
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� NetME, as described in Chapter 4, finds a minimum evolution tree within

a full circular split system.

� NetView, implemented by Monika Balvociute [2], is a tool that draws two

dimensional split networks from circular and flat split systems.

All the tools reuse common data structures and algorithms where possible. These

will be stored in the Core package, which will also be available for download as

a separate library via Maven. This package contains sub groups based on their

specific kind of functionality. For example, a sub package called data structures

will provide commonly used phylogenetic data structures relating to concepts

such as: splits, trees, networks, distances, quartets, quadruples, alignments, etc.

Another sub package called input and output will handle loading and saving com-

mon phylogenetic file formats, like Nexus and Phylip. The Maths sub package

will handle common mathematical data structures and algorithms such as basic

statistics and matrix algebra.

Several methods in our toolkit require solving linear and/or quadratic optimisa-

tion problems. Originally they made use of a third-party solver called Gurobi.

However, in order to provide free open source alternatives, we will create another

library, which again will be available via Maven. This library has a mechanism for

defining linear and quadratic programming problems and translating those into

definitions used by solvers. We plan to support both free-ware and commercial

solvers, such as Gurobi, JOptimizer, Apache commons math and GLPK. By using

this library the software developer can pose an optimisation problem once, and

then let the user chose the solver. The subsystem then translates the common

problem definition into a solver-specific one. This is beneficial in several ways.

First, it allows researchers to compare solvers in terms of results and runtime

performance. Secondly, it can be used as a mechanism to provide an alternative,

free, and built-in, solver when a commercial one, such as Gurobi, is not available.

Finally, miscellaneous tools and utilities that might be useful for the user or de-

veloper will be made available with a command line interface. These additional

tools will include: Chopper, which breaks down trees into quartets and is used in
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SuperQ and QNet; GenQS, which takes sequences, splits or geographical coordi-

nates and outputs a set of quadruples; a random distance generator tool, which

creates a Phylip or Nexus files with a randomly generated distance matrix and a

random sequence alignment generator.

We believe that our toolkit will help to increase the openness and transparency

of phylogenetic software and thereby allow other researchers to build their own

tools faster by leveraging resources that we make available and by using our

implementations as a template or protocol for their own projects. In addition,

by making our methods and tools freely available and easy to use we hope to

enable other researchers to generate new knowledge and make useful biological

discoveries.

7.2 Final remarks

Circular split systems have gained popularity because of their representation as

a planar network. This thesis looked at different aspects and ideas connected to

circular split systems. Our research included results that lead to a better under-

standing of these split systems and enables further research that will improve our

knowledge and methodology for producing relevant representations of evolution-

ary relationships. In the future we are hoping to continue investigate properties

of split systems, improve the construction of networks and extend our ability to

identify and characterise the cause of conflicts in phylogenetic data. Especially

with the phylogenetic toolkit as a compendium of the work presented in this the-

sis, we are hoping to start something that will be extended and grow over the

years and add many valuable phylogenetic construction methods to be used in

the research community.
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Appendix A

SuperQ: supplementary materials

10 20 30 40 50 60 70 80 90 100

2 0.5 2.1 4.8 12.7 32.9 79.6 180.7 427.6 719.0 1422.1

4 0.8 2.7 7.0 19.3 47.9 116.3 254.5 572.7 934.1 1749.5

6 1.1 3.4 9.7 27.1 68.0 160.6 345.5 743.0 1204.7 2144.1

8 1.4 4.3 13.1 36.4 91.8 217.3 457.4 935.5 1516.3 2656.4

10 1.7 5.2 16.9 48.0 121.1 281.5 587.7 1165.4 1881.0 3253.5

Table 1: Run times for SuperQ in seconds for selected numbers of taxa (columns)
and numbers of input trees (rows). Each run time is averaged over 10 inputs.
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Figure 1: a) Type I and b) Type II splits for SuperQ for gene trees with missing
taxa generated from a random tree with 32 taxa. c) Type I and d) Type II splits
for SuperQ for gene trees with 16 taxa generated by performing random SPR
moves.
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Appendix B

The original NeighborNet algorithm
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NeighborNet(X,D, α, β)

1: C = C1, . . . , C|X| where Ci = {xi} and xi ∈ X
2: DC = D
3: DV = D
4: Σ(T ) = {S1, . . . , S|X|} where Si = {xi}|(X\xi)
5: while |C| > 1 do
6: // First Selection Step
7: Choose a pair Cr∗, Cs∗ ∈ C that minimise the following formula:
8: QD(Cr, Cs) = (|C| − 2)DC(Cr, Cs)−

∑
t6=rDC(Cr, Cs)−

∑
t6=sDC(Cr, Cs)

9: // Second Selection Step
10: Choose the pair xi∗ ∈ Cr∗, xj∗ ∈ Cs∗ that minimise the following formula:

11: Q̂D(xi, xj) = (|C| − 4 + |Cr∗| + |Cs∗|)DV (xi, xj) −∑
t6=r∗,s∗DC(xi, Ct)−

∑
t6=r∗,s∗DC(xj, Ct)−

∑
xk∈(Cr∗∪Cs∗)\{xi}DV (xi, xk)−∑

k∈(Cr∗∪Cs∗)\{xj}DV (xj, xk)

12: // Merge Step
13: Update C by adding Cs∗ to Cr∗
14: Add xi∗xj∗ to E(G)
15: Add {Cr∗ ∪ Cs∗}|(V (G)\(Cr∗ ∪ Cs∗)) to Σ(T )
16: // Reduction and update of DC

17: while |Cl| > 2 do
18: Reduce(xi, xj, xk, G, Cl, DV , α, β)
19: end while
20: // Update of DC

21: DC(Ci, Cj) = 1
|Ci||Cj |

∑
x∈Ci

∑
y∈Cj

DV (x, y)

22: end while
23: Backsubstitution of elements in C1 and splits in Σ(T )

OUTPUT: C1 (circular ordering), Σ(T ) (tree)

Reduce(a, b, c, G, Cl, DV , α, β)

1: for i ∈ V (G)\{a, b, c} do
2: DV (u, i) = (α + β)DV (a, i) + (1− α− β)DV (b, i)
3: DV (v, i) = αDV (b, i) + (1− α)DV (c, i)
4: DV (u, v) = αDV (a, i) + βDV (b, i) + (1− α− β)DV (c, i)
5: remove a, b, c from V (G) and Cl and add u, v to V (G) and Cl
6: remove edges ab, bc from E(G) and add edge uv to E(G)
7: end for

OUTPUT: G,Cl, DV
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Levy and Pachter’s NeighborNet algorithm

NeighborNet(X,D, µ)

1: G = (X, ∅)
2: C is the set of paths in G where initially:
3: C = C1, . . . , C|X| Ci = xi and xi ∈ X
4: DC = D
5: Σ(T ) = {S1, . . . , S|X|} where Si = {xi}|(X\xi)
6: while |C| > 1 do
7: // First Selection Step
8: Choose a pair Cr∗, Cs∗ ∈ C that minimise the following formula:
9: QD(Cr, Cs) = (|C| − 2)DC(Cr, Cs)−

∑
t6=rDC(Cr, Ct)−

∑
t6=sDC(Ct, Cs)

10: // Second Selection Step
11: xi ∈ Ĉk if xi ∈ Ck and xi is a degree one vertex
12: Choose the pair xi∗ ∈ Ĉr∗, xj∗ ∈ Ĉs∗ that minimise the following formula:

13: Q̂D(xi, xj) = (|C| − 4 + |Ĉr∗| + |Ĉs∗|)D(xi, xj) −∑
t6=r∗,s∗DC(xi, Ct) −

∑
t6=r∗,s∗DC(xj, Ct) −

∑
xk∈(Cr∗∪Cs∗)\{xi}D(xi, xk) −∑

xk∈(Cr∗∪Cs∗)\{xj}D(xj, xk)

14: // Merge Step
15: Add the edge xi ∗ xj∗ to E(G), so C is updated such that Cs∗ is added to

Cr∗
16: // Tree construction step
17: Add (Cr∗ ∪ Cs∗)|(X\(Cr∗ ∪ Cs∗)) to Σ(T )
18: // Update DC

19: DC(Cr, Cs) :=
∑

xi∈Cr,xj∈Cs
µ(xi)µ(xj)D(xi, xj) and

20: DC(x,Cr) :=
∑

xi∈Cr
µ(xi)D(x, xi)

21: Update µ
22: end while

OUTPUT: C1 (circular ordering), Σ(T ) (tree)
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[52] D. Huson, T. Dezulian, T. Klöpper, and M. Steel. Phylogenetic super-

networks from partial trees. IEEE/ACM Transactions on Computational

Biology and Bioinformatics, 1:151–158, 2004. 25, 28, 35, 41

[53] D. Huson, R. Rupp, and C. Scornavacca. Phylogenetic Networks. Cambridge

University Press, 2010. 6, 21, 22, 25, 28, 45, 47

[54] S. Jackmann. Estimation and inference via bayesian simulation: An intro-

duction to markov chain monte carlo. American Journal of Political Science,

44(2):pp. 375–404, 2000. ISSN 00925853. 12

[55] T. H. Jukes and C. R. Cantor. Evolution of protein molecules. In M. N.

Munro, editor, Mammalian protein metabolism, volume III, pages 21–132.

Academic Press, N. Y., 1969. 12

[56] I. Kanj, L. Nakhleh, C. Than, and G. Xia. Seeing the trees and their branches

in the network is hard. Theoretical Computer Science, 401:153–164, 2008.

67

[57] G. Labelle, C. Lamathe, and P. Leroux. A classification of plane and planar

2-trees. Theoretical Computing Science, 307:337–363, 2008. 101

[58] C. L. Lawson and R. J. Hanson. Solving least squares problems. Prentice-

Hall, 1974. 52

[59] J. Leigh, K. Schliep, P. Lopez, and E. Bapteste. Let them fall where

they may: congruence analysis in massive phylogenetically messy data sets.

Molecular Biology and Evolution, 28:2773–2785, 2011. 28

[60] A. Levy and L. Pachter. The neighbor-net algorithm. Advances in Applied

Mathemathics, 2007. 46, 56, 58, 59, 74

[61] C. Linder and L. H. Randal-Rieseberg. Reconstructing patterns of reticulate

evolution in plants. American Journal of Botany, 91(10):1700–1708, 2004.

22

123



REFERENCES

[62] M. Lysak, M. Koch, J. Beaulieu, A. Meister, and I. Leitch. The dynamic

ups and downs of genome size evolution in Brassicaceae. Molecular Biology

and Evolution, 26:85–98, 2009. 28
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